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Abstract. We give a geometric description of different classes of
Poisson modules as introduced in [1]: we start with tensors tan-
gent to leaves on a Poisson manifold, consider Poisson structures
on bundles and also an example of Poisson module on a manifold
which does not come from any vector bundle; finally we use this
language to sketch some integral calculus on Poisson manifolds: we
suggest how to introduce integration, homology and cohomology in
our setting.

1 Introduction

This note is a geometric continuation, or maybe a geometric version, of [1]: we
will adopt the notations and assume the concept of Poisson modules developed
therein. In particular we are interested in providing geometric examples of
Poisson modules over Poisson algebras: remind that such an algebra is both
an associative algebra (A, ·) and a Lie algebra (A, {, }) such that, for each
a, b, c ∈ A, the following Leibniz identity holds:

{ab, c} = a{b, c}+ {a, c}b

Our main definition is the following [1]:

Definition. A Poisson module over A is an A-module E endowed with a
K-linear map λ : A×E −→ E such that

λ({a, b}, e) = λ(a, λ(b, e))− λ(b, λ(a, e))

{a, b} · e = a · λ(b, e)− λ(b, a · e)

for each a, b ∈ A and e ∈ E (and · denotes the associative module action).

http://creativecommons.org/licenses/by-nc/3.0/
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If moreover the following identity holds

{ab, e} = a{b, e} + b{a, e} (M)

the module is called multiplicative. We deal only with commutative Poisson
algebras, namely algebras of smooth functions on manifolds (as well known,
a Poisson manifold is precisely a manifold whose algebra of smooth functions
is a Poisson algebra), and we use the algebraic machinery set up in [1] to give
a geometric description of multiplicative Poisson modules.

In section one we describe the Poisson module of vector fields tangent to
the leaves of the generalised foliation induced by a Poisson structure on a
manifold. In section two we use the algebraic framework of [1] to relate the
structure of multiplicative Poisson module on the sections of a vector bundle
to connections on the bundle itself. In section three we give an example of
Poisson module which is not the space of sections of any vector bundle, the
module of distributions on a Poisson manifolds, and in section four we try
to extend this example giving a sketch of integration theory and a cohomol-
ogy slightly more functorial than the usual Poisson–Lichnerowicz cohomology
(cf. [6]) considered on Poisson manifolds.

Notations. We will denote by C∞(M) the algebra of real smooth functions
on a manifoldM , by Ωn(M) the space of differential n-forms onM , by X(M)
the space of vector fields on M ; we will denote by iXϕ the contraction of a
form ϕ on a vector field X ; moreover we will also write 〈X,ϕ〉 to mean the
pairing between contravariant and covariant tensor fields; LXϕ will denote
the Lie derivative of a form along a field.

IfM is a Poisson manifold with Poisson brackets {, } we denote by Ham (M)
the Lie algebra of Hamiltonian vector fields (thus fields of the form Xf =
{g, f} for some g ∈ C∞(M)), by Can (M) the Lie algebra of canonical vector
fields (thus fields X such that X{f, g} = {Xf, g}+{f,Xg}), by Cas (M) the
space of Casimir functions (thus functions f ∈ C∞(M) such that, for each
g ∈ C∞(M): {f, g} = 0); if π is the Poisson tensor, then with π# we will
denote the induced map π# : Ω1(M) −→ X(M).

Acknowledgements. I wish to thank Prof. Paolo de Bartolomeis for helpful
advice during the preparation of this paper.

2 Symplectic tensors on a Poisson manifold

IfM =
⋃

x Sx is the decomposition in symplectic leaves of a Poisson manifold
M , then we can consider the immersions i : Sx →֒ M and try to transfer the
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usual concepts given on the symplectic manifold Sx to the Poisson manifold
M : it is not immediately clear how this can be done; for example neither a
differential form nor a vector field on Sx do project on M . So we are forced
to give the following

Definition 2.1 A symplectic vector field on a Poisson manifold M is a vec-
tor field X ∈ X(M) such that for each x ∈ M , if Sx is the symplectic leaf
containing x, then X|Sx

∈ X(TSx). We denote the space of symplectic fields
with as S(M).

In other words, symplectic vector fields are precisely vector fields tangent to
leaves: of course on a symplectic manifold we have S(S) = X(S), while on a
Poisson manifold equipped with the null Poisson tensor we have S(M) = 0,
since every point is a single symplectic leaf. Notice that if iS : S −→ M is
the injection of a leaf into M then, for s ∈ S:

(X|S)s = Xi(s)

hence, if X is symplectic, Xf(s) = 〈(df)S, Xs〉.
We are interested in symplectic fields first of all because they include

Hamiltonian vector fields: more precisely, since symplectic vector fields, as a
C∞(M)-module, are generated by the Lie algebra of Hamiltonian fields, as
follows by definition, we have

Proposition 2.2 The space S(M) of symplectic vector fields is precisely the
Poisson module generated by Hamiltonian fields.

However, a canonical field is not necessarily symplectic: it suffices to consider
a Poisson manifold with the zero Poisson tensor to get a manifold where each
field is canonical, but only the null field is symplectic; moreover a symplec-
tic field is not necessarily locally Hamiltonian, as showed by the following
example.

Example 2.3 On the Poisson plane R
2
π (on the plane a Poisson structure is

determined by a smooth function π) symplectic fields must vanish at point of
null rank. Consider in particular the Poisson plane R

2
π with π(x, y) = y2: its

symplectic leaves are the upper and lower half-planes, and each single point of
the line {y = 0}; the field y∂x is obviously symplectic: indeed its restriction to
the upper (or to the lower) half-plane defines a vector field in that half-plane,
and the field vanishes on each point of the line {y = 0}; however, even if it is
symplectic, this field is not locally Hamiltonian, since

y∂x = Xf =⇒ y
∂g

∂x
= y2

(
∂f

∂x

∂g

∂y
−
∂g

∂x

∂f

∂y

)
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(for every g), which implies that ∂f
∂x

= 0 and y ∂f
∂y

= −1, therefore, around a

singular point of the line {y = 0}, the field can’t be Hamiltonian.

The space of symplectic fields will play the role of the space of differential
1-forms in the symplectic case: for example, if S is a symplectic manifold,
then S(S) = X(S), and so, by means of the isomorphism induced by the
symplectic form, S(S) ∼= Ω1(S) as C∞(M)-modules. Recall that the Lie
action of C∞(M) on the Poisson module S(M) is given by

{f,X} = [Xf , X ]

In the symplectic case we remark that, by applying the isomorphism π#:

{f, π#ω} = [Xf , π
#ω] = π#{df, ω}

Hence the Poisson module S(M) is isomorphic to Ω1(M) w.r.t. the usual
Poisson structure.

Moreover notice that if M and N are Poisson manifolds and X ∈ S(M ×
N) then X|S ∈ X(S) for each symplectic leaf in M × N (w.r.t. the usual
Poisson product structure, cf. [6, §1]); but S = SN × SM and so X(S) ∼=
X(SN)⊕ X(SM); it follows

Proposition 2.4 S(M ×N) ∼= S(N)⊕S(N)

The definition of a symplectic vector field extends in an obvious way to any
tensor field: tensors we are interested in are polyvector fields (contravariant
skew-symmetric tensor fields).

Definition 2.5 A symplectic p-tensor is a polyvector field of degree p which,
whenever restricted to any symplectic leaf, belongs to the space of tensor fields
of that leaf. The space of symplectic tensors of degree p will be denoted by
Sp(M).

Of course

Lemma 2.6 The Poisson tensor π is a symplectic 2-tensor.

Now we want to present geometrically the space S(M), as the image of
the map π# : T ∗M −→ TM induced by the Poisson structure: to do it simply
notice that
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Lemma 2.7 X ∈ S(M) if and only if, for each differential form α ∈ Ω1(M)
such that in each symplectic leaf S ⊂ M from s∗α = 0 it follows iXα = 0,
where s : S −→ M is the injection of S into M and s∗α is the pull-back of
differential forms.

Proof: If X ∈ S(M) and α is such that s∗α = 0 for every S, then, if x ∈M
and Sx is the leaf containing x:

iXα(x) = αx(Xx) = αx((X|S)x) = 0

(since (X|S)x ∈ TxSx). Vice versa suppose that X satisfies to the condition
of the lemma and that x ∈ S ⊂M ; then, if X|S(x) does not belong to TxSx,
it would exist a differential form α ∈ Ω1(M) such that αx ∈ T

∗
xSx would not

vanish when computed on the vector (X|Sx
)x but at the same time such that

s∗α = 0, whence iXα(x) 6= 0, which is absurd.

Theorem 2.8 Im π# = S(M).

Proof: If X ∈ Im π# then iαX = π(βX , α) for each α ∈ Ω1(M) and for
some βX ∈ Ω1(M), thus, by lemma 2.0., X ∈ S(M).

Vice versa, if iS : S −→ M is a symplectic leaf and σ = π|S its Pois-
son (invertible) tensor, the following diagram (which makes sense because
Im π# ⊂ S(M)) commutes:

Ω1(M)
π#

//

��

S(M)

��

Ω1(S)
σ#

// X(S)

(vertical arrows are the pull-back of 1-forms and the restriction of vector
fields). Therefore to each field X ∈ S(M) we can associate a 1-form βX =
σ♭(X|S) on S and, since the manifold is the union of its symplectic leaves, we
can lift anyone of these forms to the form α ∈ Ω1(M) (which is smooth since
the foliation is) which induces, by pull-back, every such βX . Now we use the
commutativity of the previous diagram to infer that, for every leaf S,

(π#α)|S = σ#(i∗Sα)

thus π#α = X .
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In some sense, symplectic fields have an ambiguous behaviour: on sym-
plectic leaves they correspond to differential forms, by means of the isomor-
phism between 1-forms and fields induced by the symplecticity of the leaf,
and on the other hand they remains vector fields on the manifold M : for
instance, if X is a symplectic vector field onM , we can consider its flow, thus
the 1-parameter family of local diffeomorphisms {Φt} around each x ∈ M
associated to X . Since, if x0 ∈ M , in a suitable neighbourhood U0 of x0 the
differential equation

(t ∈ I) X(c(t)) =
·
c (t)

with initial data X(0) =
·
c (0) has a unique solution (c, I), we can ask how

being X symplectic is reflected on c; of course we can consider U0 = S0×N0,
and so a pair of curves (cS, cN) determined by the maximal integral curve c
of X on U0. But, since X is symplectic, X(x0) belongs to the tangent space
in x0 to the leaf S0 × {x0}, and this means that the tangent vector in x0
to the integral curve c is tangent to the leaf. Therefore the tangent vector
to the leaf is pointwise symplectic and, since the space of symplectic fields
is generated by Hamiltonian ones, the curve is piecewise Hamiltonian, thus
splits in curves whose tangent vectors are Hamiltonian.

In other words, integral curves of a symplectic field are precisely curves
which make points they pass through belonging to a same leaf. This implies
that the curve is completely contained in a single leaf, and thus that the flow
Φt defined as

Φt(x0) = c(t)

is actually a local diffeomorphism of the leaf into itself.

Notice that this flow does not preserve the symplectic structure of the
leaf, unless the field X is canonical: indeed, in this case, if ω is the symplectic
structure obtained by restriction of the Poisson structure of M on the leaf
(thus ω# = −(π|S)

#) we find that

d

dt
Φ∗

tω = Φ∗
tLXω = 0

and so Φ∗
tω = ω. This will be, in general, false.

Theorem 2.9 A vector field X on M is symplectic if and only if its flow is
determined by a family of local diffeomorphisms of the symplectic leaves.
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Finally let us give a geometrical characterisation of symplectic tensors on a
regular Poisson manifold: take a connection ∇ : X(M) −→ Ω1(M) ⊗ X(M)
in the tangent bundle of M . The condition

∇π = 0

seems to be the most natural compatibility condition between the Poisson
structure and the connection. Locally this condition can be written as follows:
fix a Darboux–Weinstein coordinate system1 (x1, ..., xn) and its associated
bases of vector fields (∂1, ..., ∂n) and of differential forms (dx1, ..., dxn); if

π = πij∂i ∧ ∂j

(of course we adopt Einstein’s convention) and

∇∂i = Γk
ij∂k ⊗ dx

j

then

∇π = πrs∇(∂r ∧ ∂s) + ∂i ∧ ∂j ⊗ dπ
ij

= πrsΓi
rk∂i ∧ ∂s ⊗ dx

k + πrsΓj
sk∂r ∧ ∂j ⊗ dx

k + ∂kπ
ij∂i ∧ ∂j ⊗ dx

k

= πrjΓi
rk∂i ∧ ∂j ⊗ dx

k + πisΓj
sk∂i ∧ ∂j ⊗ dx

k + ∂kπ
ij∂i ∧ ∂j ⊗ dx

k

=
(
πisΓj

sk − π
jrΓi

rk + ∂kπ
ij
)
∂i ∧ ∂j ⊗ dx

k

Thus the condition ∇π = 0 is equivalent to the local equations

∂kπ
ij = πjrΓi

rk − π
isΓj

sk

or, in matrix form:

∂kπ = πΓ(k) − ΓT
(k)π

T

We can apply it to recover a well known result:

Theorem 2.10 A Poisson manifold (M,π) admits a torsionless connection
∇ such that ∇π = 0 if and only if M is regular.

1We are using Weinstein splitting theorem: in the regular case this was already settled
by Sophus Lie, cf. [7].



8 Paolo Caressa

Indeed a Poisson manifold is regular if and only if there are local coordinates
(around each point) in which the Poisson tensor is constant; in this case
equations ∇π = 0 become

πΓ(k) = ΓT
(k)π

T

But these are easily satisfied by taking into account that, in the Darboux–
Weinstein coordinates we have chosen

(i = 1, ..., r) πi,i+r = 1 and πi+r,i = −1

and all the other components do vanish (2r is the rank of the Poisson structure
in the local neighbourhood). Hence we can determine Christoffel’s symbols
Γk
ij which satisfy the previous differential equations exactly in the regular

case: it suffices to consider a symplectic connection in the symplectic half of
the neighbourhood and any torsionless connection in the singular part.

Now: if M is a regular Poisson manifold, we can assume that there exists
a torsionless connection such that ∇π = 0; since the map π# : Ω1(M) −→
X(M) is a bundle morphism, the image S(M) is a (regular) distribution
whose integral leaves are exactly the symplectic leaves of M .

But ∇ is a connection according to which the Poisson tensor is parallel:
so if X is a symplectic field

∇X = ∇π#ω = 0

Vice versa, if X is parallel then its restriction to a leaf defines a field on the
leaf, thus X is symplectic.

3 Poisson bundles

Be E −→ M a vector bundle on M and Γ(E) its module of smooth global
sections: a structure of Poisson module on Γ(E) is given by an action of the
Poisson algebra C∞(M) on the Γ(E) by means of a Lie action

{ } : C∞(M)× Γ(E) −→ Γ(E)

such that (f, g ∈ C∞(M) and s ∈ Γ(E))

{f, gs} = g{f, s}+ {f, g}s

If (U ; x1, ..., xn) is a local chart of M which trivialises the bundle E, we can
consider a C∞(U)-basis of the module of local sections (e1, ..., en), so that

{f, ei} =
∑

j

Gij(f)ej

where Gij : C∞(U) −→ C∞(U). Of course the operators Gij are linear, since
{f + g, e} = {f, e}+ {g, e}; more precisely they are CasC∞(U)-linear.
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Proposition 3.1 The matrix of operators G defines a Poisson module struc-
ture if and only if

Gij({f, g}) = [G(g), G(f)]ij + {Gij(f), g}+ {f,Gij(g)}

(Aij is the entry at the i-th row and j-th column in the matrix A).

Proof: It suffices to notice that

{f, {g, ei}} = {f,Gij(g)ej} = Gij(g){f, ej}+ {f,G
ij(g)}ej

= Gij(g)Gjk(f)ek + {f,G
ij(g)}ej

which implies that

{{f, g}, ei} = {f, {g, ei}} − {g, {f, ei}}

is equivalent to the stated condition.

Recall that we call multiplicative a Poisson module in which the following
identity holds:

{ab, e} = a{b, e} + b{a, e} (M)

Proposition 3.2 The Poisson structure on E is multiplicative if and only if
Gij are vector fields.

Proof: Indeed
∑

j

Gij(fg)ej = {fg, ei} = f{g, ei}+ g{f, ei} =
∑

j

(
gGij(f) + fGij(g)

)
ej

so that Gij is a derivation of the algebra C∞(U), hence a local vector field.

Notice that we can write a more particular functions matrix by evaluing
the entries Gij on the coordinate functions xk obtaining in such a way n3

functions
Gij

k = Gij(xk)

which put us in grade to reformulate condition 3.0 as

Gij(πrs) = [Gs, Gr]
ij + πrk

∂Gij
s

∂xk
+ πsk

∂Gij
r

∂xk
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These are not the components of any tensor: this is easily seen with an
example: if E = TM has the Poisson structure

{f,X} = [Xf , X ]

we easily get that

Gij(f) = −
∂πrj
∂xi

∂f

∂xr
− πrj

∂2f

∂xixr

where πij are the components of the Poisson tensor in the fixed local coordi-
nates, hence

Gij
k = −

∂πij
∂xk

In particular, ifM is regular, we can find local coordinates such that Gij
k = 0;

in general, the matrix Gk will split in the direct sum of a null matrix and
an arbitrary matrix satisfying to the written condition, according to Wein-
stein’s splitting theorem; in the symplectic case, w.r.t. Darboux coordinates
(q1, ..., qn, p1, ..., pn) we find that

Gij(f) = (−1)σ
∂2f

∂xixα

where (x1, ..., x2n) = (q1, ..., pn), α is the index 1 + n + j modulo n + 1 and
the sign (−1)σ is negative when i, α < n.

Notice that also in the example E = T ∗M with Poisson structure

{f, ω} = LXf
ω

we have, locally

Gij(f) =
∂πki
∂xj

∂f

∂xk
+ πki

∂2f

∂xkxj

since LXf
dxi = d{f, xi}. Again we get the derivatives of the components of

the Poisson tensor

Gij
k =

∂πij
∂xk

The coordinate change affects the matrix of operators Gij in the following
way: suppose that (V ; y1, ..., yn) is another local chart and consider U ∩ V :
here we have our Gij associated to the trivialisation of bundle E with coor-
dinates (U ; x); one passes from these coordinates to the trivialisation with
coordinates (V, y) by means of the cocycle formula which indeed does char-
acterise vector bundles, and which in matrix notation reads as

eV = CV
U e

U
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where eU = (e1, ..., en) is the basis of the module Γ(U ∩V,E) w.r.t. (U, x), eV

is the basis w.r.t. (V, y) and CV
U : U ∩ V −→ GLn(R) is the bundle cocycle

(we can consider the components Cj
i of this matrix as smooth functions on

U ∩ V ). In terms of components:

eVi = Cj
i e

U
j

Then

Gij
V (f)e

V
j = {f, eVi } = {f, C

j
i e

U
j } = Cj

i {f, e
U
j }+ {f, C

j
i }e

U
j

= Cj
iG

jk
U (f)eUk + {f, Cj

i }e
U
j

thus

Gij
V (f)C

k
j e

U
k = Cj

iG
jk
U (f)eUk + {f, Cj

i }e
U
j

In terms of matrices: (CV
U = (CU

V )
−1)

Proposition 3.3 GV (f) = CV
UGU(f)C

U
V + {f, CV

U }C
U
V

So the matrix G does not transform according to a tensorial law, because of
the presence of the second summand (in effects when it is possible to reduce
the structure group of the bundle in such a way that the coefficients of the
cocycle matrices are Casimir functions, we actually have a tensorial behaviour
of the G(f)). However, since the obstruction to tensoriality of G does not
depends on the cocycle, we get

Corollary 3.4 The difference between two structure of Poisson module is an
endomorphism of the bundle E.

Notice that, in general, these “structure constants” for the Poisson action will
be R-linear operators Gij : C∞(U) −→ C∞(U) (fulfilling condition 3.0).

A particular case is given for instance when Gij ∈ Can (U) (canonical
vector fields): then, by proposition 3.0, the only condition on the matrix G
to define a Poisson structure is

[G(f), G(g)] = 0

This structure, as we know, is necessarily multiplicative.
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Now consider a Poisson representation on the module E: remind (cf. [1])
that such a representation is a representation of the Lie algebra Ω1(M) on
Γ(E) such that

[ω, ae] = a[ω, e]− iXa
ωe

Locally we write
[ω, ei] = H ij(ω)ej

where H ij : Ω1(U) −→ C∞(U). Therefore the definition of a representation
becomes

H ij({ω, ϕ}) = [H(ϕ), H(ω)]ij + iX
Hij(ω)

ϕ− iX
Hij(ϕ)

ω

thus, evaluing on exact forms {dxi} which locally generate the module of
differentials:

H ij(dπrs) = [Hs, Hr]
ij + {H ij

r , xs}+ {xr, H
ij
s }

= [Hs, Hr]
ij + πks

∂H ij
r

∂xk
+ πrk

∂H ij
s

∂xk

with H ij
k = H ij(dxk).

As shown in [1] a representation induces a module, and by comparing the
latter equation with the one given for the Gij

k we find that the relationship
between the representation and the module induced by it is simply

Gij = H ij ◦ d

Moreover is obvious that the representation is multiplicative if and only if
H ij : Ω(U) −→ C∞(U) are C∞(U)-linear, and in this case also Gij (induced
by H ij) give rise to a multiplicative module:

Gij(fg) = H ij(d(fg)) = H ij(fdg) +H ij(gdf) = fH ij(dg) + gH ij(df)

= fGij(g) + gGij(f)

Also for representations we can write a formula for the coordinate change
in terms of the bundles’ cocycle: again we proceed by considering two local
charts (U, x) and (V, y) which trivialise the bundle and whose open sets are
not disjoint (U ∩ V 6= ∅), and the associated basis of the module of global
sections eU and eV in the chosen charts. Then

H ij
V (ω)e

V
j = [ω, eVi ] = [ω,Cj

i e
U
j ] = Cj

i [ω, e
U
j ]− iX

C
j
i

ωeUj

= Cj
iH

jk
U (ω)ek − iX

C
j
i

ωeUj
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so that
HV (ω) = CV

UHU(ω)C
U
V − iX

CV
U

ωCU
V

Now suppose our Poisson representation to be multiplicative:

[aω, e] = a[ω, e]

This, locally, means that the maps H ij : Ω1(U) −→ C∞(U) are C∞(U)-linear,
hence they correspond to vector fields X ij in U , therefore the representation
is determined (locally) by a matrix of vector fields which satisfy the following
equation

iXij{ω, ϕ} = [X(ϕ), V (ω)]ij + iπ#ωdiXijϕ− iπ#ϕdiXijω

In other words, to give a multiplicative Poisson representation is the same
as to choose in each coordinate system a matrix of vector fields. So, if we
consider the functions

X ij
k = X ij(xk)

we can use them to define an operator

∇ei = X ij
k dxk ⊗ ej

We deduce the coordinate transformation formula for this operator from that
of H ij :

XV = CU
V XUC

V
U − (π#dCU

V )C
V
U

Theorem 3.5 X ij(dxk) are Christoffel’s symbols for a Hamiltonian connec-
tion.

The idea of the proof is to compare our formulas with the transformation
rule which characterises Christoffel’s symbols (cf. e.g. [2, Vol. I, §III-7.3]). In
effects a Hamiltonian connection is an operator ∇ : Γ(E) −→ S(M)⊗ Γ(E)
such that (f ∈ C∞(M), e ∈ Γ(E))

∇(fe) = f∇e+Xf ⊗ e

Locally, such a connection can be written as

∇ei = Γk
ijXxk

⊗ ej

Now consider two local charts (U ; x) and (V ; y) in which the bundle E is
trivial (and such that U ∩ V 6= ∅): first of all we write the equation which
connects two local bases in these two different charts

eVi = Cj
i e

U
j
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and apply it to our operators

∇eVi = Cj
i∇e

U
j +XC

j
i
eUj = Cj

i Γ
l
jkXxl

⊗ eUk +XC
j
i
⊗ eUj

Therefore, if Γ̃k
ij are Christoffel’s symbols w.r.t. the chart (V, y), we get

Γ̃k
ijC

l
jXxk

⊗ eUl = Ch
i Γ

k
hlXxk

⊗ eUl +XCl
i
⊗ eUl

In a more compact way:

ΓV = CU
V Γ

UCV
U + (π#dCU

V )C
V
U

This is the transformation law of Christoffel’s symbols for a Hamiltonian
connection: it is the same formula verified by the functions X ij

k associated to
the multiplicative Poisson representation.

Thus we have characterised those representations induced by Hamiltonian
connections

Theorem 3.6 A Poisson representation is induced by a Hamiltonian con-
nection if and only if it is regular and multiplicative.

Indeed in this case the functions H ij are determined by H ij
k as

H ij(
∑

k

akdxk) =
∑

k

akH
ij
k

as it follows from the multiplicativity of the representation.
Now consider a connection ∇ : Γ(E) −→ Ω1(M) ⊗ Γ(E) in E: locally,

once a basis for the module of sections is fixed, we can write Christoffel’s
symbols of this connection as

∇ei = Γk
ijdxk ⊗ ej

and its curvature is the tensor (cf. [1])

∇2ei = ∇Γk
ijdxk ⊗ ej = Γk

ijdxk ∧ ∇ej − d(Γ
k
ijdxk)⊗ ej

= Γk
ijdxk ∧ Γs

jrdxs ⊗ er − dΓ
k
ir ∧ dxk ⊗ er

If ∇ is such a connection, we can use the isomorphism π# : Ω1(M) −→ X(M)
to define a map ∆ : Γ(E) −→ X(M) ⊗ Γ(E) as (I is the identity Γ(E) −→
Γ(E))

∆ = π# ⊗ I ◦ ∇
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Notice that, being π# defined also for exterior powers of these modules
(cf. [1]), it makes sense to consider the map ∆2 = π# ⊗ I ◦ ∇2 which, by
using the local structure equation just recalled, locally can be written as

∆2ei = π#(Γk
ijdxk ∧ Γs

jrdxs − dΓ
k
ir ∧ dxk)⊗ er

= (Γk
ijXxk

∧ Γs
jrXxs

−XΓk
ir
∧Xxk

)⊗ er

∆ is a Hamiltonian connection, since

∆ae = π#⊗ I(a∇e) + π#⊗ I(da⊗ e) = aπ#⊗ I∇e+Xa ⊗ e = a∆e+Xa⊗ e

Thus we have a canonical way to build Hamiltonian connections (and so
representations of Poisson modules) starting with ordinary connections in
the bundle E.

Vice versa, consider a Hamiltonian connection ∆ : Γ(E) −→ S(M) ⊗
Γ(E): if σ : S(M) −→ Ω1(M) is the left inverse to the map π# (thus
σπ# = identity), then

∇ := σ ⊗ I ◦∆

is a connection: indeed

∇ae = σ ⊗ I(a∆e) + σ ⊗ I(Xa ⊗ e) = a∇e+ σπ#da⊗ e = a∇e + da⊗ e

Of course if the Hamiltonian connection is of the form π# ⊗ I∇ then its as-
sociated connection is ∇ itself, hence a unique connection may give rise to
different Hamiltonian connections, and the set of such Hamiltonian connec-
tions is parametrised by left inverses to the module morphism π#.

Since it is a linear map between modules, σ is completely determined on
Hamiltonian vector fields, as

σXf = σπ#df = df

Moreover

(†) σ[Xf , Xg] = σX{f,g} = d{f, g} = {df, dg}

so that

Theorem 3.7 There exists a bijective map

{Hamiltonian connections} ←→
{Connections}{

σ : S(M) −→ Ω(M) left inverse
to π# such that (†) holds

}
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4 The module of distributions

We consider in this section an example of multiplicative Poisson module whose
Poisson structure does not come from any connection.

Be M a Poisson manifold and A = C∞(M) its Poisson algebra: the
latter contains a well known ideal, namely smooth functions with compact
support: C∞

c (M). This is an ideal w.r.t. the associative structure of the
Poisson algebra, as it follows from supp fg ⊂ supp f ∩ supp g; but Leibniz’s
identity which holds for Poisson brackets implies the same also for the Lie
structure:

supp {f, g} ⊂ supp f ∩ supp g

Notice that the algebra C∞
c (M) is a “sub-object” of C∞(M) from the alge-

braic viewpoint but not from the topological viewpoint, since it is not a closed
subspace (in the Fréchet topology) being dense; however it is the correct space
in which consider test functions for distributions (cf. [4, §I-2]): let us denote
by D(M)′, or simply by D′, the set of distributions on M . As it is well
known, it is a module over the associative algebra C∞(M) w.r.t. the coad-
joint action: therefore it seems natural, on our context, to define the Poisson
brackets between a function f ∈ C∞(M) and a distribution T ∈ D(M)′ to be
the distribution defined as

{f, T}(ϕ) = T{f, ϕ}

for each ϕ ∈ C∞
c (M).

In this way we still get a distribution, since it is a continuous (by continuity
of differential operators w.r.t. Fréchet topology in C∞(M), cf. [4, §III-5] )
linear (by bilinearity of Poisson brackets) functional; moreover it is a well
defined distribution since if ϕ ∈ D(M) and f ∈ E(M) then {f, ϕ} ∈ D(M)
(Leibniz identity), so that {T, f} ∈ D′.

Proposition 4.1 If M is a Poisson manifold then D(M)′ is a multiplicative
Poisson module w.r.t. the coadjoint action.

Proof: The structure of associative and Lie module is given by the actions

(fT )(ϕ) = T (fϕ) {f, T}(ϕ) = T ({ϕ, f})

(T ∈ D(M)′, f ∈ C∞(M) and ϕ ∈ C∞
c (M)). Notice that these are well

defined actions of C∞(M) on D(M)′; furthermore, since derivation and mul-
tiplication are continuous in Fréchet topology, {f, T} is actually an element
of D(M)′ if f ∈ C∞(M) and T ∈ D(M)′.
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That D(M)′ is a module over the associative algebra C∞(M) is well known
(cf. [4, §V]); let us show that it is a Poisson module: first of all

{{f, g}, T}(ϕ) = T{ϕ, {f, g}} = T{{ϕ, f}, g} − T{{ϕ, g}, f}

= {g, T}({ϕ, f})− {f, T}({ϕ, g})

= ({f, {g, T}} − {g, {f, T}})(ϕ)

so that it is a Lie module; Leibniz identities are also easy to be verified

({f, g}T )(ϕ) = T ({f, g}ϕ) = T ({fϕ, g} − {ϕ, g}f)

= {g, T}(fϕ)− (fT )({ϕ, g})

= (f{g, T} − {g, fT})(ϕ)

Multiplicativity reduces to a simple computation which uses the previous one:
indeed

{fg, T}(ϕ) = T ({ϕ, fg}) = T (f{ϕ, g}) + T (g{ϕ, f})

= {g, fT}(ϕ) + {f, gT}(ϕ)

hence, by Leibniz identity

{fg, T} = {g, fT}+ {f, gT} = f{g, T} − {f, g}T + g{f, T} − {g, f}T

= f{g, T}+ g{f, T}

thus the multiplicative identity for the Poisson module D(M)′.

Notice that it also makes sense to write a “skew-symmetric” identity on
D′:

{f, T}(ϕ) + {ϕ, T}(f) = 0

Moreover notice that D′ contains as a dense subspace, the space of distribu-
tions with compact support (cf. [4, §III-7]) which are precisely the elements
of the topological dual C∞(M)′, classically denoted as E(M)′ or simply as E ′.

If the Poisson manifold is oriented, we have both the regular distribution
(cf. [4, §I])

Tf(ϕ) =

∫

M

ϕf
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induced by a function f ∈ E(M), and the Hamiltonian distribution

Xf (ϕ) =

∫

M

{f, ϕ}

such that
{f, Tg}+ {g, Tf} = Xfg

as it follows from Leibniz identity for functions. Moreover

X{f,g} = {g,Xf} − {f,Xg}

by Jacobi identity for functions, and these two distributions are related by
the identity

T{f,g}(ϕ) =

∫

M

{f, g}ϕ =

∫

M

{f, gϕ} −

∫

M

{f, ϕ}g

= Xf (gϕ)− Tg{f, ϕ} = (gXf − {f, Tg})(ϕ)

so that, from T{f,g} + T{g,f} = 0, it follows

fXg + gXf = T{g,f} + {Tf , g}+ T{f,g} + {Tg, f} = Xfg

= {f, Tg}+ {g, Tf}

Notice that, ifM is symplectic, the volume element is the top degree exterior
power of the symplectic form ω (up to normalisations), so we have, by Stokes’
theorem

Xf(ϕ) =

∫

M

{f, ϕ}ωn =

∫

M

div(ϕXf)ω
n

=

∫

M

LϕXf
ωn =

∫

M

diϕXf
ωn =

∫

∂M

ϕiXf
ωn

(since dω = 0 and LXf
ω = 0 because Xf is Hamiltonian and a fortiori

canonical). Hence

Proposition 4.2 On a symplectic manifold (without boundary) the distribu-
tion Xf is zero.

This result has to be interpreted as an invariance condition of the Hilbert
space product on L2(M,ωn) w.r.t. the Poisson brackets; the non vanishing
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of these distributions is a measure of the “non-symplecticity” of a Poisson
manifold.

The structure of Poisson module on D′ can also be written in terms of the
action of a differential operator D on distributions:

(DT )(ϕ) = (−1)dT (Dϕ)

where d is the order of the differential operator, considering D = Xf (Hamil-
tonian vector field corresponding to the Hamiltonian function f):

{f, T} = XfT

Moreover, notice that it is impossible to define a Lie structure on D′ for the
same reasons that forbid the existence of an associative product (cf. [4, §V-1]).
Now we want to introduce a remarkable submodule of D′, whose elements we
can define as follows

Definition 4.3 A Casimir distribution on a Poisson manifold M is a distri-
bution T ∈ D(M)′ such that

∀f ∈ C∞(M) {f, T} = 0

The space of Casimir distributions will be denoted by C(M)′.

Thus a distribution T is Casimir if T{ϕ, f} = 0 for each f ∈ C∞(M) and for
each ϕ ∈ C∞

c (M). We have used this terminology, because of the following
example: if the Poisson manifold is oriented2 (for example if it is symplectic)
then we have an immersion T : C∞(M) −→ D(M)′ (with dense image) which
put in correspondence the function f ∈ C∞(M) with the regular distribution

Tf(ϕ) =

∫

M

fϕ

In this case:

Proposition 4.4 If c ∈ CasM is a Casimir function then Tc ∈ C(M)′.

2Actually this is not strictly needed if we consider the concept of an even and odd
differential form (and current): cf. [3, §1] and [4, §IX-2].
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Proof: Be c ∈ CasM : for every f ∈ C∞(M) and ϕ ∈ C∞
c (M) we have

{f, Tc}(ϕ) =

∫

M

c{ϕ, f} =

∫

M

{ϕ, cf}

We want to show that the distribution {f, Tc} does vanish, and it suffices to do
it in every open neighbourhood U (by the so called localisation principle, cf. [4,
§III-8]); since we are on a Poisson manifold, we can assume the neighbourhood
to be of the form U = S ×N with S symplectic; therefore

∫

U

{ϕ, cf} =

∫

N

∫

S

{ϕ|S, cf |S}|S

by Fubini’s theorem, which we can apply since {ϕ, cf} ∈ C∞
c (U) (we are

considering Liouville measure on S); remember that the evaluation of Poisson
brackets at a point x is the value of the symplectic bracket of the leaf passing
through x (evalued on the restriction of the functions to the leaf itself). But

∫

S

{ϕ|S, cf |S} = 0

because the integral of the image of a Hamiltonian vector field with compact
support on a symplectic manifold is zero (proposition 4.0).

The more the Poisson structure is far from being symplectic, the more the
structure of the module of Casimir distributions is non trivial: for example,
in the extreme case of a Poisson manifold with the zero Poisson tensor, we
have C′ = D′ (every distribution is Casimir).

Proposition 4.5 If M is symplectic then C(M)′ is the space of locally con-
stant distributions.

Proof: BeingM symplectic, we have a global immersion f 7→ Tf with dense
image of C∞(M) into D(M)′, by means of the integrations w.r.t. Liouville
measure on M . Hence it makes sense to speak about locally constant distri-
butions, as those associated to locally constant functions on M : for the sake
of simplicity we will assume M to be connected.

Now pick a Casimir distribution T ∈ C′(M) we want to prove that it is
of the form Tc for some constant c ∈ R. Again we use Schwartz localisation
principle for distributions: to prove that two distributions coincide, it suffices



Examples of Poisson Modules, II 21

to check it locally; so we can suppose that M = R
2n with the canonical sym-

plectic structure (by Darboux theorem) and coordinates (q1, ..., qn, p1, ..., pn).
Then

0 = {f, T}(ϕ) =
n∑

i=1

T

(
∂ϕ

∂qi

∂f

∂pi

)
−

n∑

i=1

T

(
∂f

∂qi

∂ϕ

∂pi

)

for each f ∈ C∞(M) and ϕ ∈ C∞
c (M). It follows for instance that, by putting

f = q1, ..., pn, for each ϕ ∈ C
∞
c (M):

T

(
∂ϕ

∂pi

)
= T

(
∂ϕ

∂qj

)
= 0

if i, j = 1, ..., n. But then the distribution T is constant (cf. [4, §II-6]) so that
it is of the form

T (ϕ) = k

∫
ϕ

Notice that each constant gives rise to a Casimir distribution, because of
proposition 4.0: ∫

{ϕ, f} = 0

on a symplectic manifold, if ϕ ∈ C∞
c (M) and f ∈ C∞(M) (by integrating

w.r.t. Liouville measure).
Thus, on a symplectic manifold, Casimir distributions do not give rise to

anything new: this is not the case on general Poisson manifolds.

Example 4.6 Consider once again the symplectic plane R2
π with π = x2+y2,

thus with brackets

{f, g}0(x, y) = (x2 + y2){f, g}

(where {f, g} =
(

∂f
∂x

∂g
∂y
− ∂f

∂y
∂g
∂x

)
are the canonical symplectic brackets on the

plane.) Of course Casimir functions are constants, just as in the symplectic
case: however, while C(R2)′ = R, there exist Casimir distributions which are
not constant on R

2
0: it is indeed obvious that a distribution with support in

the singular point (the origin) will be a good candidate).
For example Dirac distribution δ0 with support at the origin is Casimir,

since3

δ({ϕ, f}0) = {ϕ, f}0(0) = 0

3Recall that (DT )(ϕ) = (−1)dT (Dϕ) where D is a differential operator of order d.
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Its first derivatives are Casimir distributions too: for example

∂δ0
∂x

({ϕ, f}0) = −

(
2x{ϕ, f}+ (x2 + y2)

∂{ϕ, f}

∂x

)∣∣∣∣
0

= 0

as its mixed derivative ∂2δ0/∂x∂y is. However notice that

∂2δ0
∂x2

({ϕ, f}0) =

(
2{ϕ, f}+ 2xF (x, y) + (x2 + y2)

∂2{ϕ, f}

∂x2

)∣∣∣∣
0

= 2{ϕ, f}(0)

which is not zero in general. So the space C(M)′ = R
5 has the following

generators 1, δ0, (δ0)x, (δ0)y, (δ0)xy.

Of course the structure of C′ heavily depends on the Poisson tensor: if we
consider on R

2 the Poisson structure

{f, g}π(x, y) = π(x, y){f, g}

where π ∈ C∞(R2) vanishes at the origin then we get a Poisson manifold
with the same symplectic leaves of R2

0 but which may admit infinitely many
independent Casimir distributions: it will suffice to consider a function in
the Borel kernel, with all its derivatives vanishing at the origin to get the all
space of distributions with support in the origin itself4 is contained in C′.

In general the study of Casimir distributions for planar Poisson structures
should be connected to the classification of such structures.

Let us consider some further examples of Casimir distributions:

Theorem 4.7 If M and N are Poisson manifold then

C(M ×N)′ ∼= C(M)′ ⊗ C(N)′

(topological tensor product between nuclear spaces).

Proof: First of all notice that the statement makes sense: indeed the space
C(M)′ is a subspace of D(M)′, hence it is a nuclear topological vector space
(cf. [4, §IV-4]) and the tensor product is uniquely defined.

We work now at an algebraic level: the Poisson structure on the algebra
C∞(M ×N) ∼= C∞(M)⊗ C∞(N) (cf. [5, p. 531]) is given by brackets

{f1 ⊗ g1, f2 ⊗ g2} = {f1, f2}M ⊗ g1g2 + f1f2 ⊗ {g1, g2}N

4The space of such distributions is the vector space spanned by δ0 and by all its deriva-
tives, cf. [4, §III-10].
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By Schwartz’s kernel theorem (cf. [5, p. 531]), D(M ×N)′ ∼= D(M)′⊗D(N)′,
and

{T ⊗ S, f ⊗ g}(ϕ⊗ ψ) = T ⊗ S{f ⊗ g, ϕ⊗ ψ}

= T ⊗ S ({f, ϕ}M ⊗ gψ + fϕ⊗ {g, ψ}N)

= T ({f, ϕ}M)S(gψ) + T (fϕ)S({g, ψ}N)

= [({T, f}M ⊗ gS) + (fT ⊗ {S, g}N)] (ϕ⊗ ψ)

This means that if C ∈ C(M)′ and D ∈ C(N)′ then C⊗D ∈ C(M ×N)′; vice
versa, be C ∈ C(M × N)′: by the kernel theorem this distribution is linear
combination of elements of the form Ti ⊗ Si, hence, for each f, g, ϕ, ψ (in the
suitable spaces):

0 = {C, f ⊗ g}(ϕ⊗ ψ) = C{f ⊗ g, ϕ⊗ ψ}

=
∑

i aiTi{f, ϕ}MSi(gψ) +
∑

i aiTi(fϕ)Si{g, ψ}N

Functions occurring in these equations were arbitrarily chosen, so (for exam-
ple by taking f to be a constant):

0 =
∑

i

aifTi(ϕ)Si{g, ψ}N

Thus, by arbitrariness of ϕ, {Si, g}N = 0. Analogously we get {Ti, f}M = 0,
henceforth C ∈ C(M)′ ⊗ C(N)′.

Example 4.8 If S is symplectic (and connected): C(S × N)′ ∼= C(N)′; in
particular, if N is a Poisson manifold endowed with the zero Poisson tensor,
we get C(S × N)′ ∼= D(N)′ and if N is compact C(S × N)′ ∼= E(N) is the
topological dual of the space Cas (S ×N).

When the Poisson structure is regular, a Casimir function c is, in a local
neighbourhood of Darboux–Weinstein type U = S × N , constant along the
factor S, so that if X is a tangent vector field to S, we have Xc = 0 (brackets
on N are identically zero, since the manifold is regular); thus we can identify
this distribution with a functional on C∞(N):

Theorem 4.9 If M is a regular Poisson manifold then C(M)′ ∼= Cas (M)′

(topological dual of the space of Casimir distributions).



24 Paolo Caressa

Proof: If M is regular and T ∈ C(M)′, thus {T, f} = 0 for each f ∈ D(M),
then, in each local chart U , we have {T, f}|U = 0, thus

0 = {T, f}(ϕ) =
r∑

i=1

T

(
∂f

∂pi

∂ϕ

∂qi

)
−

r∑

i=1

T

(
∂f

∂qi

∂ϕ

∂pi

)

where r ≤ n is the rank of the manifold M : this follows from Weinstein’s
splitting theorem which, in the regular case, affirms that the Poisson struc-
ture is locally the product of a symplectic structure and of a null structure.
Therefore a Casimir distribution is, in each Darboux–Weinstein local chart
U = S × N , a distribution of the form kS ⊗ TN where kS is a constant, and
TN ∈ D(N)′. If c ∈ Cas (M) then we can compute on it a functional T̃ as

T̃ (c) =
∑

U

T (ψUc) =
∑

U=S×N

kSTN (c|N)

where {ψU} is a partition of the unity subordinate to the covering {U =
S × N}, being c|N a function depending only on the coordinates of the N
factor. Hence we have a map ˜ : C(M)′ −→ Cas (M)′ which is injective

since T̃ = 0 if and only if each TN is zero, so that T is zero, and surjective
since a functional γ ∈ Cas (M)′ is induced by a distribution which locally is
defined as TU = 1⊗ γ|U (the restriction γ|U defines a distribution on N since
Cas (U) = C∞(N)).

Example 4.10 Consider the Poisson manifold M = so(3)∗ \ {0}, thus the
Lie–Poisson manifold associated to the Lie algebra so(3) minus the origin; it
is a regular Poisson manifold whose leaves are concentric spheres Sr centered
at the origin and with positive radii r. A Casimir distribution is a distribution
T ∈ D(R3 \ 0) such that

0 = T{f, ϕ} = T (∇f ∧ ∇ϕ)

where ∇ denotes the gradient and ∧ the vector product. More precisely, in
Cartesian coordinates:

T{f, ϕ} = T (x(fyϕz − fzϕy) + y(fzϕx − fxϕz) + z(fxϕy − fyϕx))
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(fx = ∂f
∂x

and so on) so that the condition T{f, ϕ} = 0 implies





x
∂T

∂y
= y

∂T

∂x

y
∂T

∂z
= z

∂T

∂y

z
∂T

∂x
= x

∂T

∂z

But since (x, y, z) 6= 0, a Casimir distribution is determined whenever one of
its non identically zero partial derivatives is given (if all its partial derivatives
are zero then the distribution would be the integral by a constant function).
This means that the space of Casimir distributions is the space of distributions
whose derivatives along the directions tangent to the leaves are zero: thus they
will be continuous linear functionals on a one dimensional space (depending on
a parameter which is exactly the distance from the origin in polar coordinates
on R

3), and which, in fact, may be identified with C∞(R+)
′, the dual of the

space of Casimir functions, in agreement with the previous theorem.

Notice that, if we consider the all Lie–Poisson manifold so(3)∗ we would have
at least a distribution not induced by any linear functional on the space of
Casimir functions: Dirac measure concentrated at the origin (which is the
singular point of the Poisson manifold). Therefore, in this case, each Casimir
function induces a Casimir distribution but not vice versa, as we expect from
the theorem.

In general, a distribution with support in a point with null rank is Casimir;
for example consider the Poisson structure in the plane R

2
π with brackets

{f, g}(x, y) = π(x, y){f, g}S(x, y)

where { }S are the usual symplectic brackets and π a smooth function: then
a Casimir distribution T is such that

∀f ∈ E(R2) ∀ϕ ∈ D(R2) 0 = T (π{f, ϕ}S) = (πT ){f, ϕ}S

so that πT is constant, This is the case, for instance, if supp π ∩ suppT = ∅,
as, in particular, for T = δ0 and π(0, 0) = 0; notice that not every distribution
with support in the origin is Casimir, unless π belongs to the Borel kernel
(all its derivatives are zero in that point).
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Example 4.11 Consider R
2 with brackets induced by the function π = y2:

then not only Dirac’s measures concentrated at the singular points (thus
the ones on the line {y = 0}) are Casimir distributions (as their derivatives
w.r.t. the x of any order), but if we consider every distribution R ∈ D(R)′ on
the line {y = 0} and we extend it to R2 as T (ϕ) = R(ϕ◦i) (with i(x) = (x, 0))
then, of course, T ∈ C(R2)′, so that we have an inclusion D(R)′ −→ C(R2)′.

Example 4.12 A Lie–Poisson manifold g∗ has at least a point of rank zero:
the origin; thus it admits Casimir distributions with support in {0}. If we
write in coordinates the Lie–Poisson structure as

π =
∑

i,j

∑

k

ckijxk∂i ∧ ∂j

then a distribution T is Casimir if and only if

∑

i,j,k

T (ckijxk∂if∂jϕ) = 0

for each f ∈ C∞(Rn) and ϕ ∈ C∞
c (Rn). Hence

0 =
∑

i,j,k

ckijxkT (∂if∂jϕ)

Of course δ0 is Casimir, while its first derivatives are not:

∂hδ0{f, ϕ} = ∂h{f, ϕ}(0) =
∑

i,j

chij∂if(0)∂jϕ(0)

nor, a fortiori, higher ones.

5 A sketch of integration theory

We have developed a general setting for differential Poisson calculus [1]: here
we try to sketch accordingly some integral calculus on Poisson manifolds.

Consider the decomposition in symplectic leaves
⋃

x∈M Sx of a Poisson
manifold M : if c ⊂ Sx is a p-chain (cf. [3, §6]) in the symplectic leaf through
x ∈ M , and P ∈ Sp

c(M) is a symplectic tensor field with compact support
on M , then we can consider the restriction P |Sx

which is a skew-field on Sx

and, via the symplectic form ω on Sx induced by the Poisson structure on
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M , we can identify it with a compactly supported p-form ω♭(P |S), where
ω♭ : TSx −→ TS∗

x is the isomorphism associated to the non-degenerate form
ω, and integrate it over c, by defining

∫

c

P =

∫

c

ω♭(P |S)

Notice that, if c ⊂ S is a symplectic chain and P ∈ Sp
c(M) then P = π#α

(with α ∈ Ωp(M) and 〈π#α, β1 ∧ ... ∧ βn〉 = (−1)n〈α, π#β1 ∧ ... ∧ π
#βn〉,

cf. [6, pag. 43]) and, by commutativity of the previous diagram we have
ω#(i∗Sα) = (π#α)|S, so that

∫

c

P =

∫

c

i∗Sα

where iS : S −→M is the inclusion.
We can extend this definition to linear combinations of chains lying in

different leaves: if c1 ⊂ Sx1 ,...,ck ⊂ Sxk
and P ∈ Sp

c(M) we simply define
∫
∑

i aici

P =
∑

i

ai

∫

ci

P

Definition 5.1 A p-chain
∑

i aici such that ci is contained in a single sym-
plectic leaf is called symplectic chain.

For example, if X ∈ X1
c(M) is a Hamiltonian vector field with compact sup-

port, then X = π#dϕ for some ϕ ∈ C∞
c (M), and if S is a symplectic leaf,

then, for a 1-chain c contained in S:
∫

c

X =

∫

c

i∗Sdϕ =

∫

c

di∗Sϕ =

∫

∂c

i∗Sϕ = ϕ(x1)− ϕ(x0)

where ∂c = x0 + x1 denotes the boundary of the chain c.
In particular we can consider integration over symplectic leaves if P ∈

Sp
c(M) is a symplectic tensor field with compact support in each leaf, for

example if leaves are compact (this always makes sense because symplectic
leaves are oriented manifolds).

Symplectic chains with the boundary operator form a singular complex
SS(M) which is a subcomplex of the usual singular complex S(M) ofM , and
which induces some singular homology groups HS

k (M). Since a symplectic
cycle is also a cycle in M , we have a map

Hk(M) −→ HS
k (M)
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Example 5.2 In R
2 with the Poisson structure induced by a smooth function

π(x, y), a symplectic 0-chain is a linear combination of points in which the
Poisson tensor identically vanishes or is never zero, and a 1-chain or a 2-chain
is a linear combination of 1-simplexes or 2-simplexes σi such that π ◦σi never
vanish. For instance, if π = x2 + y2 then we have

HS
0 (R

2
0) = R HS

1 (R
2
0) = R HS

2 (R
2
0) = 0

If π = y2 then

HS
0 (R

2
0) = R

R HS
1 (R

2
0) = 0 HS

2 (R
2
0) = 0

Notice that in this case the 0-th homology space is infinite dimensional since
it simply counts the number of leaves: more generally we can remark that

Proposition 5.3 If M is a Poisson manifold then homology groups HS
i (M)

coincide with the singular homology groups of the topological space M w.r.t.
the leaf-topology.

It suffices to remember that the leaf topology on a foliated space is the topol-
ogy whose open sets are the intersection between open sets in the topology
of the manifold and leaves5.

Of course, if M is a symplectic manifold, these concepts reduce to the
usual notions of singular chain, usual integration and singular homology.

Symplectic chains are examples of more general objects which can be also
considered as generalisations of distributions, and which we will call currents:
actually we will not deal with currents in the de Rham sense but with some
kind of linear functionals which are the analogous, in the Poisson case, of the
classical de Rham currents (cf. [3, §3]).

Definition 5.4 A p-Poisson current on a Poisson manifold M is a contin-
uous linear functional on the Fréchet space Sp

c(M) of symplectic tensors of
order p and with compact support in M ; p is the order of the current. We
denote the space of p-Poisson currents with the symbol X ′

p and with X ′ the
space of Poisson currents of arbitrary order.

5Notice that, while in this topology the space M remains paracompact, is no longer a
pure manifold (in the sense of Bourbaki), i.e. its dimension may vary (being the rank of
the Poisson structure), but in every case we can consider the singular homology groups
w.r.t. this leaf topology, and, since leaves are the connected components, it is obvious that
we obtain the groups so far defined.
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Of course a 0-current is nothing else than a distribution. Moreover, if c is a
symplectic p-chain then the map

P 7→

∫

c

P

defines a p-current, where P ∈ Sc(M); also if α is a p-form on M then it
induces the p-Poisson current

Tα(P ) =

∫

M

iPα

(by contracting α over P ).
These examples are not surprising, since a Poisson structure defines a map

π# : T ∗M −→ TM and if T is a Poisson current then it induces a de Rham
current DT in the following way: for each form α

DT (α) = T (π#α)

Since Im π# = S, this defines a current for each form α. Of course, if M is
symplectic then π# is an isomorphism which induces an isomorphism between
the space of Poisson currents and the space of de Rham currents.

If M is the null Poisson manifold then π# = 0 and so there is only one
Poisson current: the zero one.

Now we want to set up a complex with Poisson currents, and, to do this, we
need a boundary operator: since symplectic chains are currents this operator
has to restrict to the boundary of chains. We draw inspiration from Stokes
theorem, which, if c is a 1-chain and Xf a Hamiltonian vector field, reads as

∫

c

Xf =

∫

∂c

f

But the operator X : C∞
c (M) −→ Ham c(M) is the Schouten multiplication

by the Poisson tensor π, which in general defines the coboundary operator of
the Poisson complex (X∧n(M), dπ):

dπT = −[[π, T ]]

where [[, ]] here denotes Schouten brackets (cf. [6, §1, §5]).

Lemma 5.5 If P ∈ Sp
c(M) and Q ∈ Sq

c(M) then [[P,Q]] ∈ Sp+q−1
c (M).
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Proof: We use Nijenhuis formula for Schouten brackets:

i[[P,Q]]α = (−1)q(p+1)iPdiQα+ (−1)piQdiPα− iP∧Qα

(cf. [B-V] Theor. 2.21).
Now, by hypothesis and lemma 2.0., P ∈ Sp

c(M) and Q ∈ Sq
c(M) are

such that, if i∗Sα = 0 then iPα = iQα = 0 (where iS : S −→ M is the
inclusion of an arbitrary symplectic leaf). We have to check in this case that
also i[[P,Q]]α = 0, which is trivial: iPdiQα = 0 and iQdiPα = 0, so that

iP∧Qα = iP iQα = 0

whence, by Nijenhuis formula, i[[P,Q]]α = 0.

In particular, [[π, T ]] is again a symplectic tensor, and we can define the
boundary of a Poisson current T ∈ X ′

p as

bT (P ) = −T ([[π, P ]])

if P ∈ Sp
c(M).

Notice that b : X ′
p −→ X

′
p−1, and that this is a boundary operator since

dπ is a coboundary one (because of the graded Jacobi identity for Schouten
brackets):

bbT (P ) = −bT ([[π, P ]]) = T ([[π, [[π, P]]]]) = 0

We can consider homology groups for this complex which we will denote
HSp

∗ (M) and call symplectic homology groups.
For instance, since in a symplectic manifold S(S) ∼= Ω(S) we get that this

homology is precisely de Rham homology (cf. [3, §4]) in this case:

Theorem 5.6 If S is symplectic then HSp(M) = HdR(M) (de Rham homol-
ogy space).

Moreover, since a 0-current is a distribution, and in this case bT (ϕ) = T (Xϕ)
we find that H0(M) = C(M)′ is the space of Casimir distributions.

Of course if M is a null Poisson manifold then its homology (from degree
one on) is trivial, being trivial its complex; in general the map D which sends
a Poisson current into a de Rham current induces a map D∗ : HSp(M) −→
HdR(M) in homology: in fact

bDT (α) = DT (dα) = T (π#dα) = T (−[[π, π#α]]) = bT (π#α) = DbT (α)
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since π#dα + dππ
#α = 0 (cf. [6, pag. 43]).

The homology we defined above contains the singular homology of sym-
plectic chains; but notice that we may also define a cohomology, using sym-
plectic fields: in fact we can consider the complex

0 −→ C∞(M) −→ S(M) −→ S2(M) −→ S3(M) −→ ...

with the operator dπ(P ) = −[[π, P ]]; as we know this operator is a coboundary,
so that we have a cohomology H∗

S(M) ring: in fact wedge product of symplec-
tic tensors induces a morphism in cohomology, since (cf. [B-V] Prop. 2.16)

dπ(P ∧Q) = (dπP ) ∧Q+ (−1)pP ∧ dπQ

We call this cohomology symplectic cohomology, and notice that we have
introduced it algebraically in [1] as the cohomology of the Lie algebra HA.

We remark explicitly that this cohomology is not the usual Poisson coho-
mology of the manifold (cf. [6, §5]), since our complex is a subcomplex of the
usual Poisson complex, which is formed by all skew-symmetric contravariant
tensor fields. If we denote by HLP (M) the usual Poisson cohomology, we have
that

Theorem 5.7 There is a ring morphism H∗
S(M) −→ HLP (M).

(of courseHLP (M) has a ring structure induced by the wedge product between
symplectic tensors.)

Of course, if the manifold is symplectic then S(M) = X(M) which is, via
π#, isomorphic to Ω1(M), so that all these cohomologies coincide with the
de Rham one.

On the other hand, if M is the null Poisson manifold then S(M) = 0
so that H0

S(M) = C∞(M) but Hk
S(M) = 0 if k > 0, while the cohomology

groups w.r.t. the Poisson cohomology are the spaces of tensor fields themselves
Xk(M); this shows that symplectic cohomology is coarser than Poisson coho-
mology: indeed it is well known (cf. [6, §5.1]) that H1

LP (M) coincides with
Can (M)/Ham (M), while H1

S(M) is (Can (M) ∩ S(M))/Ham(M) (by the
same computation): so, for example, when M has the null Poisson structure
we find, as just stated, H1

LP (M) = X(M), while H1
S(M) = 0.

Moreover symplectic cohomology is a bit more functorial than Poisson
one: indeed if F :M −→ N is a smooth Poisson submersion between Poisson
manifold, thus a smooth submersion such that

F ∗{f, g}M = {F ∗f, F ∗g}N
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then we can pull-back symplectic tensors from N to M : this is done firstly
on Hamiltonian vector fields as

F ∗Xf := XF ∗f

and on any symplectic field by C∞(N)-linearity:

F ∗(fXg) := (F ∗f)XF ∗g

Proposition 5.8 The map F ∗ : S(N) −→ S(M) is a well-defined morphism
of differential modules.

Proof: If X ∈ S(N) = Im π#
N then

F ∗X = π#
MF

∗ω

where ω ∈ Ω(N) is any 1-form on N such that π#
Nω = X : we need to show

that the value of F ∗X does not depend on ω but only on its image in X(N);
to check that, we pick a form γ ∈ ker π#

N , and verify that

π#
MF

∗γ = 0

We have to show that a vector field is zero: let us compute it on a smooth
function f ∈ C∞(M):

π#
MF

∗γ(f) = 〈π#
MF

∗γ, df〉 = −〈F ∗γ, π#
Mdf〉 = −〈γ, dF (π

#
Mdf)〉

But F is both a Poisson map, so that dFπ#
MF

∗ = π#
N (cf. [6, §7.1]), and a

submersion, so that f = F ∗ϕ for some ϕ ∈ C∞(N), therefore

π#
MF

∗γ(f) = −〈γ, dF (π#
Mdf)〉 = −〈γ, dF (π

#
MdF

∗ϕ)〉

= −〈γ, dF (π#
MF

∗dϕ)〉 = −〈γ, π#
Ndϕ〉

= 〈π#
Nγ, dϕ〉 = 0

(since γ ∈ ker π#
N .)

Now we show that F ∗ is a morphism of modules: this follows from the
fact that F it is a Poisson map:

F ∗(fX) = F ∗ (f
∑

i fiXhi
) =

∑
i F

∗(ffi)XF ∗hi

=
∑

i F
∗(f)F ∗(fi)XF ∗hi

= F ∗(f)F ∗(X)
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Moreover, F ∗Xf = XF ∗f means exactly that the diagram

C∞(N)

dπ
��

F ∗

// C∞(M)

dπ
��

S(N)
F ∗

// S(M)

does commute.

Of course we call the morphism of modules F ∗ : S(N) −→ S(M) induced
by a Poisson map the pull-back map. Suppose that X =

∑
i fiXhi

with
fi, hi ∈ C

∞(N): then

dF ◦ F ∗X =
∑

i

dF ◦ fiXhi
=

∑

i

(fi ◦ F )F
∗Xhi

=
∑

i

(fi ◦ F )XF ∗hi
= X ◦ F

so that F ∗ behaves really as a pull-back:

dF ◦ F ∗X = X ◦ F

Of course we extend it to a map of DG-algebras F ∗ : S•(N) −→ S•(M) as

F ∗(P ∧Q) := F ∗P ∧ F ∗Q

Corollary 5.9 If P is a symplectic tensor on a Poisson manifold N and if
F :M −→ N is a Poisson map then there exists a unique symplectic pull-back
F ∗P on M .

Finally we come to the promised functoriality:

Theorem 5.10 If F : M −→ N and G : N −→ P are smooth Poisson
submersions between Poisson manifolds then
(1) (G ◦ F )∗ = F ∗ ◦G∗.
(2) If F = Id :M −→ M then F ∗ = Id : S(M) −→ S(M).
(3) If P ∈ Sp(N) and Q ∈ Sq(N) then F ∗[[P,Q]] = [[F ∗P, F ∗Q]].
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Proof:

(1) is trivial on Hamiltonian fields,

(GF )∗Xh = X(GF )∗h = XF ∗G∗h = F ∗XG∗h = F ∗G∗Xh

and extends linearly on symplectic fields

(GF )∗(fXh) = (GF )∗f(GF )∗Xh = (F ∗G∗f)(F ∗G∗Xh) = F ∗G∗(fXh)

(2) If F = Id then F ∗Xh = Xh and F ∗(fXh) = fXh so that F ∗ = Id too:
in any case the extension to arbitrary symplectic tensors follows from the
definition.
(3) For p = 1 and q = 0 we have

F ∗[gXh, f ] = F ∗(gXhf) = F ∗(g{f, h}) = F ∗g{F ∗f, F ∗h} = [F ∗(gXh), F
∗f ]

The case p = q = 1 is also simple: for Hamiltonian fields

F ∗[Xf , Xg] = F ∗X{f,g} = XF ∗{f,g}

= X{F ∗f,F ∗g} = [XF ∗f , XF ∗g] = [F ∗Xf , F
∗Xg]

Furthermore

F ∗[fXh, Xg] = F ∗(f [Xh, Xg] + {f, g}Xh)

= F ∗f [F ∗Xh, F
∗Xg] + F ∗{f, g}F ∗Xh

= F ∗f [F ∗Xh, F
∗Xg] + {F

∗f, F ∗g}F ∗Xh

= [F ∗fF ∗Xh, F
∗Xg]

(similarly for the other variable) so that (3) holds when p = q = 1. Now
proceed by induction on q in the case p = 1: recall that

[[P,R ∧X ]] = [[P,R]] ∧X + (−1)r(p+1)R ∧ [[P,X ]]

and write Q as R ∧X (for the sake of simplicity assume only one summand)
with X ∈ S1(N); then, by induction:

F ∗[P,Q] = F ∗[P,R] ∧ F ∗X + (−1)r(p+1)F ∗R ∧ F ∗[P,X ]

= [F ∗P, F ∗R] ∧ F ∗X + (−1)r(p+1)F ∗R ∧ [F ∗P, F ∗X ]

= [F ∗P, F ∗R ∧ F ∗X ] = [F ∗P, F ∗Q]

Notice that this works for any p, so the theorem is proven.
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Example 5.11 If F :M −→ N is Poisson then F ∗πN = πM : indeed

πN#
F (x) = (dF )xπ

M#
x F ∗

F (x)

F ∗Xf = XF ∗f is a particular case of

Lemma 5.12 The pull-back commutes with the Poisson differential.

Proof: By definition of dπ, if P ∈ Sp(N):

F ∗dπNP = −F ∗[πN , P ] = −[F ∗πN , F ∗P ] = −[πM , F ∗P ] = dπMF ∗P

by the previous theorem and the example.

This is the result we are interested in:

Theorem 5.13 A smooth Poisson submersion F :M −→ N induces a mor-
phism F ∗ : HS(N) −→ HS(M).

Proof: Of course we put F ∗[P ] = [F ∗P ] using the pull-back: this makes
sense by the lemma, and induces a morphism since, by definition, F ∗(P∧Q) =
F ∗P ∧ F ∗Q.

Remember that we have defined a homology by means of singular homol-
ogy of symplectic chains: now, if P is a symplectic p-tensor, then define the
pairing 〈, 〉 : Sp

c(M)× SS(M) −→ R as

〈P, c〉 =

∫

c

P

and notice that

〈dπP, c〉 =

∫

c

dπP =

∫

c

dππ
#α = −

∫

c

π#dα

= −

∫

c

i∗Sdα = −

∫

∂c

i∗Sα = −〈P, ∂c〉

so that this is a skew-symmetric pairing B : HS
k (M)×HS

k (M) −→ R between
leaf singular homology and symplectic cohomology which induces a map B♭ :
Hk

S(M) −→ Hk(M) as
B([P ])([1]) = 〈P, c〉
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if B([P ]) = 0 then, for each leaf S and each chain c ⊂ S:

∫

c

i∗Sα = 0

where P = π#α, so that i∗Sα = 0 and this implies P = 0; a fortiori [P ] = 0
so that B is injective.

Notice that this duality exists only for symplectic cohomology and leaf
singular homology, since it makes no sense for general Poisson cohomology
nor for the singular homology of the all manifold M : nevertheless it is not a
Poincaré duality, since it can fail to be non degenerate.

Example 5.14 Consider again R
2 with the structure π = x2 + y2: the first

symplectic homology group is R, generated by a loop around the origin; for
example the unit circle is certainly a cycle which is non trivial in homology.
We have also an immediate cohomology class in H1

S(R
2) given by the tangent

vector field to this circle: x ∂
∂y
−y ∂

∂x
, which is symplectic since it is zero at the

origin; moreover it gives rise to a cohomology class, since
(
x ∂
∂y
− y ∂

∂x

)
(x2 +

y2) = 0, which is not zero: indeed if, for some f :

x
∂

∂y
− y

∂

∂x
= Xf

then 



x = (x2 + y2)
∂f

∂x

y = (x2 + y2)
∂f

∂y

so that f = 1
2
ln(x2+y2) would not exists at 0; hence the field x ∂

∂y
−y ∂

∂x
can’t

be Hamiltonian, hence it gives rise to a non trivial cohomology class.
But also the field y ∂

∂y
+ x ∂

∂x
is symplectic and its zero on the function

x2 + y2; moreover if

y
∂

∂y
+ x

∂

∂x
= Xf

then 




x = −(x2 + y2)
∂f

∂y

y = (x2 + y2)
∂f

∂x

and again f = arctan x
y
would not globally exists; hence the field y ∂

∂y
+ x ∂

∂x

isn’t Hamiltonian too, so that it gives rise to another non trivial cohomology
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class. These classes are different, since if they belong to the same class then
for some f

Xf = x
∂

∂y
− y

∂

∂x
+ y

∂

∂y
+ x

∂

∂x
= (x+ y)

∂

∂y
− (y − x)

∂

∂x

therefore 1 = fxy = fyx = −1 and f can’t exist in R
2. We conclude that

H1
S(R

2) 6= R = HS
1 (R

2).
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