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Abstract. Regular Poisson structures and foliated (almost) com-
plex structures are considered on manifolds, as a generalization of
the Kähler case. We discuss some examples and make some remarks
on the general case.

1 Introduction

Symplectic structures and (almost) complex structures on manifolds are in-
teresting not only in themselves, but especially when they can be suitably
combined. In particular, it is well known that, given a symplectic form ω
on a manifold M , the space of compatible almost complex structures is not
empty (cf. [1]), where “compatible” means

{

ω(JX, JY ) = ω(X, Y )

ω(JX,X) > 0 (X 6= 0)

On the other hand, almost complex structures can be exhibited (locally and
globally) such that there are no compatible symplectic forms (cf. [9], [11]).
Furthermore it is nowadays a classic result that there are symplectic manifolds
with no Kähler structures (see e.g. [12], [3] or, for a more detailed account,
[10]).

Many classes of manifolds do not support symplectic structures: however
there is a natural generalization of the concept of a symplectic structure,
namely the notion of Poisson structure, which may arise when symplectic
structures lack (see e.g. [7], [14], and, for a comprehensive exposition, [13]).

http://creativecommons.org/licenses/by-nc/3.0/
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It is therefore natural to ask about a possible interplay between these “gener-
alized symplectic structures” and (almost) complex structures. In this paper
we define such a compatibility for regular Poisson structures not for general
ones: indeed, the formers both induce foliations1 and are G-structures2. We
will exploit several non trivial examples, whose study is our main motivation.

In section 2 we recall the concept of a regular Poisson structure. In section
3 we discuss in details some example of regular Poisson structures on mani-
folds with Kähler leaves, with emphasis on a case where the manifold cannot
be Kählerİn the last section we state the definition of (almost) Poisson–Kähler
structure and discuss the existence of compatible almost complex structures
with a given regular Poisson structure on a manifold and, vice versa, we give
necessary conditions for the existence of regular Poisson structures compati-
ble with a given almost complex one, along the same lines as in the symplectic
case. Finally we give a family of foliated (almost) complex structures on the
torus T7 that cannot be Poisson–Kähler.

We would like to thank Paolo de Bartolomeis for useful comments and re-
marks. The first author would like also to thank the Mathematics Department
of the University of Parma for its warm hospitality, during the preparation
of this paper.

2 Regular Poisson structures as G-structures

A Poisson manifold (M,π) is a smooth manifold M equipped with a 2-
contravariant skew-symmetric tensor π ∈

∧2 T ∗M and such that Poisson
brackets

{f, g} = π(df ∧ dg)

turns C∞(M) into a real Lie algebra (cf. [7] or [13]). If the rank of π is
constant then the Poisson manifold is said to be regular .

A regular Poisson manifold is naturally foliated, since the image H(M)
of the map π# : T ∗M → TM , induced by π as iπ#(α)(β) = π(α ∧ β), is a
Lie subalgebra of TM (due to Jacobi identity for Poisson brackets), hence
an integrable distribution. Moreover, the restriction of π on each leaf L is of
maximal rank (the dimension of each leaf is the rank of the Poisson tensor) so
that it induces a symplectic structure (π|L)−1 on each leaf L. Thus a regular
Poisson manifold is foliated by symplectic leaves.

1In general a Poisson manifold admits a generalized foliation, in a sense which may be
make precise, cf. e.g. [8] or [13].

2This is no longer true in the general case.
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The classic example is that of a symplectic manifold: it is a regular Poisson
manifold whose Poisson tensor π has maximal rank, so that the map π# is an
isomorphism and the 2-form ω(X, Y ) = π(π#−1(X), π#−1(Y )) is a symplectic
form on M . Its symplectic leaves are just its connected components. By
contrast, every manifold is regular Poisson w.r.t. the null Poisson structure
given by the 0 tensor: in a natural way, the product S × N of a symplectic
manifold times a null Poisson manifold is equipped with a regular Poisson
structure of rank dimS, and Lichnerowicz splitting theorem (indeed foreseen
by Sophus Lie) asserts that every regular Poisson manifold is locally of the
form S ×N being dimS its rank3.

Recall (cf. [4]) that, if (M,F) is a foliated manifold, one can define the
foliated de Rham complex

Ωk(M,F) := {α ∈ Ωk(M) | ∀x ∈M αx ∈
∧

k T ∗

xSx}

where Ωk(M) denotes the space of k-forms on M and Sx is the leaf passing
through x. These spaces are sub-C∞(M)-modules of Ωk(M) and, moreover,
the graded algebra Ω∗(M,F) =

⊕

k Ω
k(M,F) is an ideal in Ω∗(M) w.r.t. the

wedge product; furthermore, dΩk(M,F) ⊂ Ωk+1(M,F) where d denotes the
usual exterior differential on the de Rham complex.

Now we can interpret a Poisson structure in terms of foliated forms as
follows [7], [4]:

Proposition 2.1 On a manifold M a regular Poisson structures π of rank r
is the same as a pairs (F , ω), where F is a foliation and ω a foliated closed
2-form with rank r.

An important class of regular Poisson structures which we are going to use is
given by Dirac brackets4 (cf. [7], [13], [8]).

Definition 2.2 A Dirac manifold is a triple (M,F , ω) where M is a mani-
fold, F a foliation on M and ω a non degenerate two-form on M such that
its pull-backs via the injections of any leaf into the manifoldM are symplectic
on the leaf.

We are interested in Dirac manifolds since they are regular Poisson manifold,
their Poisson brackets being defined as

{f, g}(x) = {f, g}Lx
(x)

3This is a particular case of Weinstein’s splitting therem (cf. [13], [14]), which holds in
any Poisson manifold.

4This notion emerges in the broader context of algebroids: we will use only its particular
version we need, on manifolds, following [13].
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where {, }Lx
is the bracket induced by the symplectic form ω on the leaf Lx

through x (this is indeed a smooth function because the distribution x 7→ Lx

is smooth).
As proved by I. Vaisman (cf. [13]) every regular Poisson manifold can be

embedded, as a Poisson submanifold, into a Poisson manifold whose brackets
are Dirac.

3 Some Examples

In many cases symplectic leaves of a Poisson manifolds are Kähler: for ex-
ample a product S × N of a Kähler manifold S times a null manifold N
equipped with the Poisson product structure, or the vector space g

∗ dual
to a semisimple Lie algebra g equipped with Lie–Poisson brackets (see [13]
or [8] for Lie–Poisson structures: their symplectic leaves, being symplectic
homogenous spaces are Kähler, cf. e.g. [1], [10]).

Example 3.1 Consider R3 (with global coordinates (x, y, z)) equipped with
the contact form α = dz−ydx, and takeM = R3×S1 with the non degenerate
2-form (by ϑ we denote the local coordinate on S1)

ω = dα+ α ∧ dϑ = dx ∧ dy + dz ∧ dϑ− ydx ∧ dϑ

Now we build Dirac brackets: consider the Reeb fielddefined as

iXα = 1 and iXdα = 0

so that X = ∂/∂z and the foliation integrates the distribution D spanned by
∂/∂z and ∂/∂ϑ; notice that ω(X, ∂/∂ϑ) = 1, and that its pull-backs to leaves
are symplectic. In this way, the foliated complex structure defined by

J

(

∂

∂z

)

=
∂

∂ϑ
and J

(

∂

∂ϑ

)

= − ∂

∂z

is Kähler.

Example 3.2 Consider S3 as embedded in R
4 (with global coordinates (x1, x2,

x3, x4)) and equipped with the contact form induced by

α = x1dx1 − x2dx1 + x3dx4 − x4dx3
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Moreover take S1 as embedded in R2 (with global coordinates (x5, x6)): its
tangent vector is given by

V = −x6
∂

∂x5
+ x5

∂

∂x6

and equip the product M = S3 × S1 ⊂ R6 with the 2-form

ω = dα+ α ∧ dϑ

being ϑ the 1-form dual to V defined as

ϑ = −x6dx5 + x5dx6

A global basis of the tangent bundle of S3 (as a sub-manifold of R4) is































X = −x2
∂

∂x1
+ x1

∂

∂x2
+ x4

∂

∂x3
− x3

∂

∂x4

Y = −x3
∂

∂x1
− x4

∂

∂x2
+ x1

∂

∂x3
+ x2

∂

∂x4

Z = −x4
∂

∂x1
+ x3

∂

∂x2
− x2

∂

∂x3
+ x1

∂

∂x4

Notice that X is just the Reeb vector field, since

iXα = 1 and iXdα = 0

so that the distribution D spanned by X and V is integrable: hence we have
Dirac brackets on M = S3 × S1. Now, let us define an almost complex
structure J on M as



















J(X) = V

J(Y ) = Z

J(Z) = −Y
J(V ) = −X

As one may check, this is a complex structure and D is J-invariant, so that
we have defined a Poisson–Kähler structure on M = S3 × S1.

Remark 3.3 The foliated complex structure J of the previous example is
actually the restriction of the following integrable complex structure defined
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on an open dense set in R6:
























0 −x2
1+x2

4

r21

x1x2+x3x4

r21

x2x4−x1x3

r21

x3x5+x2x6

r22

x2x5−x3x6

r22
x2
1+x2

4

r21
0 x1x3−x2x4

r21

x1x2+x3x4

r21

x3x6−x2x5

r22

x3x5+x2x6

r22

−x1x2+x3x4

r21

x2x4−x1x3

r21
0 −x2

2+x2
3

r21

x4x6−x1x5

r22

x4x5+x1x6

r22
x1x3−x2x4

r21
−x1x2+x3x4

r21

x2
2+x2

3

r21
0 −x4x5+x1x6

r22

x4x6−x1x5

r22

−x3x5+x2x6

r21

x2x5−x3x6

r21

x1x5−x4x6

r21

x4x5+x1x6

r21
0 0

x3x6−x2x5

r21
−x3x5+x2x6

r21
−x4x5+x1x6

r21

x1x5−x4x6

r21
0 0

























where r21 = x21 + · · ·+ x24 and r22 = x25 + x26.

A similar example may also be constructed on S2n+1×S1, and, more generally,
on each product M × S1 being M a compact contact manifold: we simply
pick the Reeb field X on M and the tangent field V to the second factor
S1, thus we consider the Poisson structure given by Dirac brackets, and the
foliated complex structure

J(X) = V and J(V ) = −X

It’s interesting that these manifolds are not Kähler (they have wrong Betti
numbers...) but are Poisson with Kähler leaves. A more complex example is
the following:

Example 3.4 Let us consider the Iwasawa manifold I(3) which, we remind,
is the quotient H/Γ being

H =











1 z1 z3
0 1 z2
0 0 1











z1, z1, z3 ∈ C

∼= C
3

and Γ the subgroup

Γ =











1 m1 m3

0 1 m2

0 0 1











m1, m1, m3 ∈ R
3[
√
−1]

acting on H by multiplication.

It is well-known that this manifold cannot be Kähler w.r.t. any other complex
structure on it ([3]). Now we want to construct a Poisson structure on I(3) of
rank four with Kähler leaves and, to do this, we define Dirac brackets, and a
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global integrable complex structure, thus we need: 1) a non degenerate 2-form
ω on I(3); 2) a foliation of rank 4 whose leaves are symplectic w.r.t. pull-backs
of ω; 3) a complex structure on I(3) such that its restriction to any leave of
the foliation gives rise to a Kähler structure.

Let us work on the group G with complex coordinates

(z1, z2, z3) = (x1 +
√
−1x2, x3 +

√
−1x4, x5 +

√
−1x6)

Next we consider the following basis for TI(3)

ξ1 =
∂

∂x1
ξ4 =

∂

∂x4
− x2

∂

∂x5
+ x1

∂

∂x6

ξ2 =
∂

∂x5
ξ5 =

∂

∂x6

ξ3 =
∂

∂x3
+ x1

∂

∂x5
+ x2

∂

∂x6
ξ6 =

∂

∂x2

and their dual 1-forms

α1 = dx1 α4 = dx4
α2 = dx5 − x1dx3 + x2dx4 α5 = dx6 − x2dx3 − x1dx4
α3 = dx3 α6 = dx2

Now define the non degenerate 2-form

ω = α1 ∧ α6 − α2 ∧ α5 − α3 ∧ α4

and take the distribution D spanned by {ξ2, ξ3, ξ4, ξ5}: since commutation
rules for ξis are

[ξ1, ξ4] = ξ5 [ξ1, ξ3] = ξ2 [ξ3, ξ6] = −ξ5 [ξ4, ξ6] = ξ2

(remaning commutators being zero), we get an involutive distribution: more-
over

dω(ξi, ξj, ξk) = 0

for any i, j, k ∈ {2, 3, 4, 5}, thus the pull-backs of ω to the leaves of D are
closed and, since these pull-backs are non degenerate, we get a symplectic fo-
liation, thus a regular Poisson structure. Finally consider the almost complex
structure defined as

J(ξ1) = −ξ6 J(ξ2) = ξ5 J(ξ3) = ξ4
J(ξ4) = −ξ3 J(ξ5) = −ξ2 J(ξ6) = ξ1
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Theorem 3.5 J is an integrable complex structure on I(3), which induces
a foliated complex structure on the foliation which integrates D, and Kähler
structures on leaves w.r.t. the symplectic structures induced by ω.

Remark 3.6 Notice that the integrable complex structure J on I(3) is cali-
brated by the 2-form ω, thus:

ω(JX, JY ) = ω(X, Y ) and ω(JX,X) > 0

This means that there exists a global hermitian metric h(X, Y ) = ω(JX, Y )
(which, of course, cannot be Kählerian).

Remark 3.7 All leaves are compact, namely they are four dimensional tori,
and we can identify them to the fibers of the fibration p : I(3) −→ T2 whose
fiber over [z1] is given by

p−1([z1]) =









1 z1 z3
0 1 z2
0 0 1









4 Poisson–Kähler structures

Since a non degenerate two-form does exist on a manifold if and only if there
exists also an almost complex structure (and vice versa) it is natural to ask
about a relationship between two such structures on a same manifold: in the
case of Dirac brackets the foliation must be involved too, so we ask about
foliated almost complex structures, thus endomorphisms J of the bundle TF
of vectors tangent to leaves such that J2 = −Id .

Definition 4.1 Let (M,F) be a foliated manifold: then a non degenerate
foliated two-form ω and a foliated almost complex structure J are said to be
compatible (and ω is said to be calibrated on J) if the following hold true:

(1) ω(JX, JY )(x) = ω(X, Y )(x)

(2) ω(JX,X)(x) > 0

(3) i∗(dω)(x) = 0
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where i denotes the embedding of the leaf through any x ∈M .

An (almost) Poisson–Kähler manifold is a Poisson manifold equipped with
a foliated (almost) complex structure compatible with the foliated 2-form
induced by the Poisson structure: of course symplectic leaves of a Poisson–
Kähler manifolds are Kähler.

Proposition 4.2 If (M,F , ω) is a Dirac manifold then there exists a cali-
brated foliated almost complex structure on M .

Proof: It sufficies to consider the local case: take M = R2n ×R2m with the
foliation given by the product and

ω =









0 −In 0 0
In 0 0 0
0 0 0 −Im
0 0 Im 0









Since the space of ω-calibrated foliated complex structures on R2(n+m) is

Sp(2n)× Sp(2m)

U(n)× U(m)
(∗)

the set of ω-calibrated foliated almost complex structures on a Dirac manifold
is in one to one correspondence with the sections of the fiber bundle E →
M with standard fiber given by (*), and since this homogeneous space is
contractible, E always admits sections.

qed

Remark 4.3 Notice that a Sp(2n)×Sp(2m)-structure on a manifold is equiv-
alent to give a pair of complementary almost symplectic distributions (F ,G)
(cf. [5]), so that any Dirac manifold has a complementary almost symplectic
distribution (not necessarily integrable).

Now we want to face the same questions in the general case of a regular
Poisson structure: first of all notice that we can identify the set C of foliated
complex structures on R2n+m with the space GL+

2n+m(R)/GLn(C) · GLm(R).
Consider the Poisson structure on R2n × Rm defined as5

π0 =

(

ω0 0
0 0

)

5By ω0 we mean the standard symplectic structure in R2n.
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We are interested in the subspace

C(π0) = C ∩ Ps(2n,m)

where Ps(2n,m) is the Poisson group of invertible linear maps A : R2n+m →
R

2n+m such that ATπ0A = π0. Thus we are considering the space C(π0) of
foliated complex structures which leave π0 invariant.

Of course, both Sp(2n) andGLm(R) are subgroups of Ps(2n,m): moreover
we have the following simple

Lemma 4.4 Ps(2n,m) = Sp(2n) ·GLm(R) · hom(R2n,Rm)

Now, an element of C(π0) is the image of a Poisson map: indeed the Poisson
group Ps(2n,m) acts on this set by the usual conjugation action:

A · J := AJA−1

This action is transitive: indeed, if we denote by J0 ∈ C(π0) the matrix

J0 =

(

ω0 0
0 I

)

and let W be an arbitrary subspace of dimension 2n endowed with a complex
structure induced by a foliated complex structure J ∈ C(π0), after picking
a Darboux basis on W (v1, ..., vn, w1, ..., wn) such that Jvi = wi ([6]) we see
that there exists a unitary transformation U : R2n → W which extends to a
transformation T : R2n ×Rm → R2n ×Rm in U(n)×GLm(R). Moreover, the
isotropy group at the point W0 is U(n)×GLm(R), hence we have proved the
following

Proposition 4.5 C(π0) = Ps(2n,m)/U(n)×GL(m,R)

Now, by the previous lemma, C(π0) becomes homeomorphic to

Sp(2n)

U(n)
× R

2nm

and hence contractible, so that, given a regular Poisson structure (M,π)
on a manifold, the set C(π) of foliated complex structures (defined on the
symplectic distribution induced by π) compatible with π is not empty:
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Corollary 4.6 Let (M,π) be a regular Poisson manifold and H(M) ⊂ TM
its distribution, then there exist a foliated almost complex structure J and a
J-Hermitian foliated metric h which is almost Kähler w.r.t. π.

We have seen that a regular Poisson structure admits always almost Poisson–
Kähler structures: on the other hand we want now to stress that, given an
almost complex structure tangent to a foliation, it is not always possible to
find out a Poisson structure such that the pair (π, J) is almost Poisson–Kähler.

Let J be a foliated almost complex structure on a foliated manifold (M,F):
since we will deal with jets computations, we can still assume M = R2n+m

(where 2n is the dimension of leaves, which is even since there is a foliated
almost complex structure J on them) and we will also assume that leaves are
given by planes

x2n+1 = c1 , ... , x2n+m = cm

Let π be a Poisson structure compatible with J such that π(0) = π0 the latter
being the canonical Poisson structure of rank 2n in R2n+m.

From Weinstein’s splitting theorem it follows that there exists a (local)
diffeomorphism ϕ : R2n+m → R2n+m such that

ϕ∗(π) = π0

According to this diffeomorphism, the structure J will change into J̃ = ϕ∗(J).
Without loss of generality, we can assume that ϕ∗ evalued at 0 is the identity
and that

J(0) = J0

Then J is π-compatible if and only if J̃ is π0-compatible, which can be ex-
pressed by the following conditions

{

ω0(J̃X, J̃Y ) = ω0(X, Y )

ω0(J̃X,X) > 0
(1)

for all X and Y vector fields tangent to leaves (being X 6= 0 in the second
equation). Let us denote ϕ∗ in matrix form as

ϕ∗(x) =

(

ϕ11(x) ϕ12(x)
0 ϕ22(x)

)

and J(x) as

J(x) =

(

J11(x) J12(x)
0 J22(x)

)

being J11(0) = J0.
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Theorem 4.7 If there exists a Poisson structure π on M with Hamiltonian
foliation given by F which is almost Poisson–Kähler (w.r.t. J) then the fol-
lowing hold true

[

∂ϕ11

∂xi

∣

∣

∣

∣

∣

0

− ∂ϕT
11

∂xi

∣

∣

∣

∣

∣

0

, J(0)

]

=
∂JT

11

∂xi

∣

∣

∣

∣

∣

0

− ∂J11
∂xi

∣

∣

∣

∣

∣

0

(i = 1, ..., 2n+m).

Proof: Let us consider the first equation of (1):

ω0((ϕ∗Jϕ
−1
∗
)(X), (ϕ∗Jϕ

−1
∗
)(Y )) = ω0(X, Y )

Now looking at the first order jets in both hands of this equation, we get that
(being (e1, ..., e2n) the canonical symplectic basis on the leaves)

j10(ω0((ϕ∗Jϕ
−1
∗
)(er), (ϕ∗Jϕ

−1
∗
)(es))) = j10(ω0(er, es))

if and only if

(

([

∂ϕ∗

∂xi
, J

]

+
∂J

∂xi

)

∣

∣

∣

∣

∣

0

er

)T

π0J(0)es+(J(0)er)
T π0

([

∂ϕ∗

∂xi
, J

]

+
∂J

∂xi

)

∣

∣

∣

∣

∣

0

es = 0

which is equivalent to say that the following matrix

[

∂ϕ11

∂xi
, J0

]

∣

∣

∣

∣

∣

0

+
∂J

∂xi

∣

∣

∣

∣

∣

0

is symmetric.
qed

Needless to say, a similar result holds for Dirac manifolds.

Example 4.8 A foliated almost complex structures which admits no com-
patible Poisson structures: take R7 with coordinates (x1, ..., x7) endowed with
the trivial foliation of codimension one, just given by

x7 = const.

Consider the foliated almost complex structure whose matrix, in the given

coordinates, is

(

J(x) H(x)
0 ψ(x)

)

, being J(x)2 = −Id and ψ(x) a non vanishing
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smooth function. The compatibility condition of Theorem 4.7 becomes































































(

∂J62
∂x1

− ∂J26
∂x1

)

∣

∣

∣

∣

∣

0

+
(

∂J16
∂x2

− ∂J61
∂x2

)

∣

∣

∣

∣

∣

0

+
(

∂J51
∂x3

− ∂J15
∂x3

)

∣

∣

∣

∣

∣

0

+

+
(

∂J32
∂x4

− ∂J23
∂x4

)

∣

∣

∣

∣

∣

0

+
(

∂J13
∂x5

− ∂J31
∂x5

)

∣

∣

∣

∣

∣

0

+
(

∂J21
∂x6

− ∂J12
∂x6

)

∣

∣

∣

∣

∣

0

= 0

(

∂J23
∂x1

− ∂J32
∂x1

)

∣

∣

∣

∣

∣

0

+
(

∂J31
∂x2

− ∂J13
∂x2

)

∣

∣

∣

∣

∣

0

+
(

∂J12
∂x3

− ∂J21
∂x3

)

∣

∣

∣

∣

∣

0

+

+
(

∂J62
∂x4

− ∂J26
∂x4

)

∣

∣

∣

∣

∣

0

+
(

∂J16
∂x5

− ∂J61
∂x5

)

∣

∣

∣

∣

∣

0

+
(

∂J51
∂x6

− ∂J15
∂x6

)

∣

∣

∣

∣

∣

0

= 0

(2)
The following foliated almost complex structure





















0 0 0 −1 0 0 ψ1

0 0 0 0 −1 0 ψ2

ϕ(x) 0 0 0 0 −1 ψ3

1 0 0 0 0 0 ψ4

0 1 0 0 0 0 ψ5

0 0 1 −ϕ(x) 0 0 ψ6

0 0 0 0 0 0 ψ7





















where ϕ, ψ1, ..., ψ7 are smooth functions on R7 such that:

∂ϕ

∂x2
(0) 6= 0 and ψ7(x) 6= 0

does not satisfy the second equation of the system (2), and so cannot be
almost Poisson–Kähler. By taking R-periodic functions this almost complex
structure passes on to the torus T7.

We observe that the latter example can be extended to any foliation of rank
greater than four. On the other hand, when the rank is four, the compatibility
conditions of (2) are always satisfied.
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