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Abstract. We sketch some differential calculus on Poisson alge-
bras and introduce a concept of module and representation on a
Poisson algebras; we give examples and consider cohomologies con-
necting these constructions to the algebra of Poisson brackets.

1 Introduction

In this note we deal with a notion of a module over a Poisson algebra, dwelling
mainly on examples. The concept of a Poisson algebra is classical, and the
main examples are all of geometric nature (cf. [4]), thus coming from sym-
plectic and, more generally, Poisson manifolds ([1], [6]), and this is also the
reason why commutative Poisson algebras are considered, and why the main
theme in Poisson algebras is the development of tools which resembles the
ones used in geometry, like differential calculus on polyvector fields (cf. [2]).
In this note we sketch the already known results and we develop more differ-
ential calculus by introducing a concept of connection on Poisson algebras: to
do that we also introduce a notion of module over a Poisson algebra, which
seems to be very natural and which captures many examples coming from
the geometric interpretation of Poisson algebras. To understand the inter-
play between modules, connections and differential calculus is the aim of this
note.

The paper is organised as follows: in the first section we remind the basic
definitions on commutative Poisson algebras, which usually are introduced
in a geometric way on manifold, and give some example. In the second
section we set up an algebraic framework for Cartan and Ricci calculus over
associative algebras, through the notion of differential module, and apply it to
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the case of Poisson algebras. In section three we introduce a notion of Poisson
module and give several examples. In section four we exploit the category of
Poisson modules, in section five we introduce a notion of representation for a
Poisson algebra connected to the concept of Poisson module, while in section
six we discuss the relationship between the notions of Poisson module and
representation and the concept of connection as introduced in section two.

Acknowledgements. I wish to thank Prof. Paolo de Bartolomeis for helpful
advice during the preparation of this paper.

2 Poisson algebras

Remind the following definition:

Definition 2.1 A Poisson algebra is a K-module A which is both an associa-
tive algebra (A, ·) and a Lie algebra (A, {, }) such that the following Leibniz
identity holds for each a, b, c ∈ A

{a · b, c} = a · {b, c}+ {a, c} · b

(K is a commutative ring with unit).

For us the ground ring will always be a field, and the reader may think about
it as the field of real or complex numbers.

So the axioms for a Poisson algebra are the following:

(1) a · (b · c) = (a · b) · c.

(2) {a, b}+ {b, a} = 0.
(3) {{a, b}, c}+ {{c, a}, b}+ {{b, c}, a} = 0.

(4) {a · b, c} = a · {b, c}+ {a, c} · b.

Although a Poisson algebra may well be non-commutative (w.r.t. the as-
sociative product), our main characters here are commutative1 ones, thus in
algebras such that

∀a, b ∈ A a · b = b · a

Hence from now on the term Poisson algebra will mean a commutative Poisson
algebra.

1We have in mind essentially Poisson algebras of functions, so we are interested in the
commutative case; moreover the simplest properties of the derivation functor break down
in the non-commutative case.
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Examples are well known (since long time ago), the most important being
A = C∞(S) the algebra of smooth functions2 on a symplectic manifold (which
goes back to Lagrange and Poisson); the main non symplectic example is the
Lie–Poisson structure, the Poisson structure on the algebra C∞(g∗) of smooth
functions on the dual vector space of a Lie algebra g (and which is due to
Lie); more generally, the algebra of functions C∞(M) of a Poisson manifold
is, by definition, a Poisson algebra (for instance see [2], [4] for these examples
and much more).

Poisson algebras are the objects of a category whose morphisms are Pois-
son maps, thus K-linear maps f : A −→ B such that

∀a, b ∈ A f{a, b} = {f(a), f(b)} and f(ab) = f(a)f(b)

Notice that this category has tensor products, since, if A and B are Poisson
algebras then A ⊗ B becomes in turn a Poisson algebra by means of the
following operations:

(a1 ⊗ a2)(b1 ⊗ b2) = (a1b1)⊗ (b1b2)

{a1 ⊗ a2, b1 ⊗ b2} = {a1, b1} ⊗ a2b2 + a1b1 ⊗ {a2, b2}

Of course a Poisson subalgebra B of a Poisson algebra A is an associative
subalgebra closed under Poisson brackets, and a Poisson ideal is an associative
ideal which is also a Lie ideal w.r.t. Poisson brackets.

The most important subalgebra of a given Poisson algebra A is CasA, the
Casimir subalgebra which is simply the center of the Lie algebra (A, {, }):

CasA = {c ∈ A | ∀a ∈ A {a, c} = 0}

This is not a Poisson ideal.
Because of the Leibniz identity, Poisson brackets induce derivations on the

associative algebra (A, ·): if we denote by DerA the A-module (remember:
we confine ourselves to commutative algebras) of derivation of A in itself then
we have a K-linear map

X : A −→ DerA

defined as
Xa(b) = {a, b}

(so that it is actually a derivation and not simply a linear operator because
of the Leibniz identity); Jacobi identity for {, } means that X is a Lie algebra
morphism:

X{a,b} = [Xa, Xb]

2Of course one may consider analytical or simply polynomial functions, both in this and
in the following example.
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Classically one defines the derivations Xa to be the “Hamiltonian fields” on
the algebra A: we denote the Lie algebra of Hamiltonian derivations by
HamA: it is a Lie subalgebra of DerA. We have the exact sequence of
Lie algebras:

0 −→ CasA −→ A −→ HamA −→ 0

Notice that a Hamiltonian derivation is also a derivation w.r.t. the Lie struc-
ture of A, since

Xa{b, c} = {a, {b, c}} = {{a, b}, c}+ {b, {a, c}} = {Xab, c}+ {b,Xa, c}

Then it is natural to consider the set of derivations of A which are also Lie
derivations: we denote it by CanA and call its elements canonical derivations.
Of course it is a Lie subalgebra of DerA and HamA is a Lie ideal in CanA.

The Lie algebra H1
π(A) = Can (A)/Ham(A) (we use this notation because

it turns out that this space is actually the first Poisson cohomology space of
A) is an important invariant of the Poisson algebra A: for example there is a
natural map

H1
π(A) −→ DerCasA

defined as follows: if X ∈ CanA then XCasA ⊂ CasA, since if c ∈ CasA
then

{X(c), a} = X{c, a} − {c,X(a)} = 0

for each a ∈ A; of course if X ∈ HamA then Xc = 0 for each c ∈ CasA, so
that a class X+HamA defines a derivation X in CasA; this map is surjective,
since if Y ∈ DerCasA then we can use the exact sequence of Lie algebras

0 −→ CasA −→ A −→ HamA −→ 0

to extend Y to a derivation of A (modulo Ham (A)); but of course this map
is not injective.

The category of Poisson algebras has, of course, a “geometric” dual. Be
A a Poisson algebra: then we can consider its spectrum, thus the set SpecA
of maximal ideals; if A is commutative we can repeat the usual arguments of
Algebraic Geometry and Functional Analysis to give to SpecA some topology.
It suffices to consider elements of A as “points” χ ∈ Spec (A) in the usual
way a(χ) = χ(a) (we identify maximal ideals and multiplicative functionals
on the algebra). So we can consider the weak topology w.r.t. these functions
on A.

Example 2.2 If A = C∞(M) where M is a smooth manifold then of course,
as a set, Spec (A) = M . Moreover our topology cöıncides in this case with
the manifold topology since a set is closed if and only if it is the zero level set
of a smooth function (Whitney theorem).
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Example 2.3 If A = C(X) (complex continuous functions on a Hausdorff
space) then Spec (A) is homeomorphic to X , as follows from Gel’fand–Naim-
ark theory.

Now consider the algebra CasA of Casimir elements of some Poisson alge-
bra A, and its spectrum SpecCasA with its topology. Obviously there exists
a surjection

Π : SpecA −→ SpecCasA −→ 0

corresponding to the injection CasA ⊂ A: thus, in some sense, the topo-
logical space SpecA defines a fibration on the space SpecCasA.

Theorem 2.4 Fibers of the map Π are spectra of symplectic Poisson alge-
bras.

Proof: Take m ∈ Spec CasA and Π−1(m): it is the set of maximal ideals
which contain the ideal m. Now, for each M ∈ Π−1(m), consider the quotient
AM = M/m: it is an associative algebra which is Poisson w.r.t the following
brackets:

{a+m, b+m} = {a, b}+m

(where a, b ∈ M). This definition makes sense because m ⊂ CasA, and these
brackets are really Poisson since { } on A are; now compute Casimir elements
for these brackets: if c+m is such an element then, for each a ∈ M:

{a +m, c+m} = {a, c}+m

must belong to m, which means that c+m defines an element in CasA/m ∼= K,
therefore c is a constant. Hence brackets defined on AM are symplectic.

qed

3 A general setting for Differential Calculus

The pair (HamA,X) plays the role of the pair (ΩA, d) in classical differential
calculus, even thought the set HamA is not an A-module nor it has the
universal property of differentials: so we are forced to define some generalised
differential concept in our more general context, and we start with a

Definition 3.1 A differential module over an associative algebra A is a pair
(D, δ), where D is an A-module and δ ∈ Der (A,D), such that the image Im δ
spans D as a module.
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Of course differential modules form a category where a morphism between
(D, δ) and (D′, δ′) is an A-module morphism f : D −→ D′ such that the
following diagram commutes:

D
f // D′

A

__@@@@@@@@

>>}}}}}}}}

For instance the module ΩA of Kähler differentials over A defines a dif-
ferential module (w.r.t. the universal derivation d : A −→ ΩA), which can in
fact be defined as the initial object in the category of differential modules:
then, as usual, one can construct ΩA explicitly and show that it satisfies the
universal property of initial objects; in the sequel we will fix a category of
differential modules and denote by ΩA its initial object3.

Our example here is the module HA generated by HamA: notice that
if (and only if) the Poisson structure is symplectic (i.e. non degenerate:
CasA = K) then HA = DerA is precisely the dual of ΩA (Kähler differ-
entials); Leibniz identity means that (HA, X) is a differential module. Notice
that, by definition of ΩA as initial object in the category of differential mod-
ules, there exists a map

H : ΩA −→ HA

of A-differential modules, thus A-linear and such that

Xa = H(da)

so that we can define Poisson brackets as

{a, b} = 〈H(da), db〉

which we may rewrite as

{a, b} = π(da, db)

where π : ΩA ∧ ΩA −→ A is the tensor determined by H, which is nothing
else than the Poisson tensor of the algebra, and which indeed characterises
the Poisson structure by means of the well known integrability condition
[[π, π]] = 0, being [[, ]] the Schouten–Nijenhuis brackets on polyderivations,

3Notice that we have to assume that our category of differential modules has an initial
object: if we confine ourselves to the category of all differential modules then Kähler
differentials do the job, and if we consider projective differential modules overA = C∞(M),
the algebra of smooth maps on a differential manifold, then the initial object is the module
of de Rham differential, which is distinct from that of Kähler differentials.
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cf. e.g. [2] (the map H characterises the Poisson structure too, as showed in
[5] where Schouten brackets are introduced for such operators).

We can develop classical Cartan calculus on differential modules (D, δ),
by defining a contraction map and a Lie derivative: to do this we have to
consider the following submodule of DerA

X(D) = {X ∈ DerA | ∀c ∈ ker δ X(c) = 0}

This is a submodule and a Lie subalgebra too; it is just the space of derivations
which see the elements of the kernel ker δ as constants. Next we define a map
i : X(D)×D −→ A as

iXδa = X(a)

and extend by Aδ-linearity. This map is called contraction and it is a non
degenerate pairing which satisfies the usual properties.

We can define also a Lie derivative by taking Cartan’s “magic formula”
as a definition

LXω = iXδω + δiXω

for X ∈ X(D) and ω ∈ D. Then, by extending these maps to the exterior
powers of the module D respecting degrees, we find that mutatis mutandis
all the usual identities of differential calculus hold (for example those listed
in the tables in [1, page 121] or in [6, pag. 126–128]).

We can extend this calculus to higher order “differentials” by considering
the spaces4

∧n

A D and extending the derivation δ : A −→ D to a sequence of
maps δ :

∧n D −→
∧n+1D as

δ(a0δa1 ∧ · · · ∧ δan) = δa0 ∧ δa1 ∧ · · · ∧ δan

Both contraction and Lie derivative extends to higher order preserving usual
properties, moreover δ ◦ δ = 0: thus we can consider the differential cohomol-
ogy of A w.r.t. the differential module (D, δ):

HD(A) = ker δ/Im δ

The subalgebra ker δ contains informations about how much a differential
module is not an initial object in its category: indeed consider the algebra
Aδ = A⊗K ker δ over the ring ker δ:

Proposition 3.2 ΩAδ
= D and DerAδ = X(D).

4In a non commutative setting tensor product should be taken into account instead of
wedge one.
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In fact there is a map Ξ : X(D) −→ DerAδ given by

Ξ(X)(a⊗ c) = X(a)⊗ c

which is an isomorphism; hence Kähler differentials over Aδ are characterised
as

X(D) = DerAδ = Hom A(ΩAδ
, A)

so that ΩAδ
= D.

We can also generalise Ricci calculus to differential modules in the obvious
way:

Definition 3.3 If (D, δ) is an A-differential module and E is an A-module,
a D-connection in E is a K-linear map ∇ : E −→ E⊗D such that (for a ∈ A
and e ∈ E)

∇(ae) = a∇e + e⊗ δa

Of course a connection is ker δ-linear; for instance, if D = ΩA (the initial
object in the category of modules we are dealing with) then we recover the
usual concept of a connection, and the following theorem, due to Nahrasiman,
is well known (cf. e.g. [3]):

Theorem 3.4 An A-module E has a ΩA-connection if and only if is A-
projective.

In our more general context this will not be the case; we have to slightly
generalise this result as follows: if E is an A-module it is also an Aδ-module
via the action (a⊗ c) · e = (ac) · e.

Theorem 3.5 An A-module E has a D-connection if and only if is Aδ-
projective.

The proof is the same as given in [3].
Of course such an operator extends to the exterior powers E ⊗

∧k D as

∇(e⊗ ω) = ∇e ∧ ω + (−1)degωe ∧ δω

so that the curvature R = ∇2 is well defined and satisfies Bianchi identity:

∇R = 0

We can also reformulate the concept of D-connection in terms of “partial”
covariant derivatives as follows
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Definition 3.6 If (D, δ) is an A-differential module and E an A-module then
a D-covariant derivative in E is a K-bilinear map D : X(D)×E −→ E such
that

DX(ae) = aDXe+ δ(a)e

(if X ∈ X(D), a ∈ A and e ∈ E.)

Of course, if D = ΩA then X(D) = DerA and we recover the classical concept
of covariant derivative.

A D-covariant derivative induces a connection as follows: simply define

iX∇e = DXe

for X ∈ X(D) and e ∈ E; because of the non-degeneracy of the contraction
between X(D) and D this equation uniquely defines a map ∇ : E −→ E⊗D,
which is of course a connection:

iX∇(ae) = DX(ae) = aDXe + (iXδa) e = iX (a∇e + e⊗ δa)

Needless to say, the curvature of the connection is the obstruction of the
covariant derivative to be a morphism of Lie algebras:

iXiYR = DXDY −DYDX −D[X,Y ]

For instance if A is a Poisson algebra and D = HA we have the concept of
Hamiltonian connection, i.e. a K-linear map ∇ : E −→ E ⊗HA such that

∇(ae) = a∇e + e⊗Xa

To identify the corresponding partial covariant derivative we have to know
what X(D) is: since there exists the exact sequence

0 −→ CasA −→ A −→ HamA −→ 0

and CasA = ker δ, then X(D) = HA = D. Therefore a Hamiltonian covariant
derivative is a K-bilinear map D : HA ×E −→ E such that

iXa
∇e = DXa

e

Leibniz identity reads now as

DXa
(be) = bDXa

e+ {a, b}e

We recognise in our Hamiltonian connections the contravariant connections
as defined by Vaisman in [7] who was, in turn, inspired by Bott’s works on
characteristic classes of foliations.
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4 Modules over Poisson algebras

Now we come back to Poisson algebras: the most powerful idea to understand
the structure of an algebraic object is to look for its “incarnations”, which
usually define a category: so for a group we have the category of its repre-
sentations, for a ring the category of its modules, &c. It is therefore natural,
when A is a Poisson algebra, to try to extend Poisson brackets to a suitable
category of modules over A. We propose the following

Definition 4.1 A Poisson module over A is an A-module E endowed with a
K-linear map λ : A×E −→ E such that

λ({a, b}, e) = λ(a, λ(b, e))− λ(b, λ(a, e))

{a, b} · e = a · λ(b, e)− λ(b, a · e)

for each a, b ∈ A and e ∈ E (and · denotes the associative module action).

In other words, a Poisson module is a module both for the associative and for
the Lie structure on A, and satisfies some kind of Leibniz rule. It is natural
(and useful to control the length of formulas) to avoid any explicit mention
of λ and to write {a, e} = λ(a, e) so that the axioms for a Poisson module
become

{{a, b}, e} = {a, {b, e}} − {b, {a, e}}

{a, b} · e = a · {b, e} − {b, a · e}

Notice that the structure of associative and Lie module on A do not commute
in general (of course they do on the Casimir subalgebra CasA).

Let us collect some example.

Example 4.2 A is a Poisson module w.r.t. the adjoint actions on itself; also
the dual K-vector space A′ is a Poisson module w.r.t. the coadjoint actions. In
the former case Poisson module axioms coinc̈ıde with Poisson algebra axioms;
in the latter it is a matter of a simple computation: if ϕ ∈ A′ and a, b, c ∈ A:

({a, b}ϕ)(c) = ϕ({a, b}c) = ϕ({a, bc})− ϕ(b{a, c})

= {a, ϕ}(bc)− (bϕ)({a, c}) = (b{a, ϕ} − {a, bϕ}) (c)

Example 4.3 A Poisson ideal IpA is a Poisson module w.r.t. the Poisson
operations of A restricted to I.
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Example 4.4 If ϕ : A −→ B is a morphism of Poisson algebras then B is a
Poisson A-module via

a · b = ϕ(a)b and {a, b} = {ϕ(a), b}

That B is a representation of the Lie algebra A is well-known; moreover

{a, a′} · b = ϕ({a, a′})b = {ϕ(a), ϕ(a′)}b

= {ϕ(a), ϕ(a′)b} − ϕ(a′){ϕ(a), b}

= {a, a′b} − a′{a, b}

For instance

Example 4.5 If A is a non-commutative Poisson algebra, and Z(A) its Pois-
son center, thus the subalgebra

Z(A) = {z ∈ A | ∀a ∈ A az = za}

then A is a Poisson module over the Poisson algebra Z(A), w.r.t. the product
and Poisson bracket in A.

Example 4.6 Consider the space of linear operators EndK(A) on A as an
A-module via (a, b ∈ A, T ∈EndK(A)):

(aT )(b) = a(Tb)

Furthermore we can define

{a, T}(b) = {a, T b}

That this is a Lie action follows from Jacobi identity for the Poisson structure
on A; EndK(A) becomes, equipped with these brackets, a Poisson module on
A: indeed

({a, b}T )(c) = {a, b}T (c) = {a, bT (c)} − b{a, T (c)} = ({a, bT} − b{a, T})(c)

This is the adjoint Poisson structure: the coadjoint structure

{a, T}′ = −T ◦Xa

defines a Lie action too, but it is not Poisson; however, if we consider this Lie
structure and the coadjoint associative product:

(a ·′ T )(b) = T (ab)

we get a Poisson module.
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Notice that there exists a third Lie action which is natural to consider on
EndK(A), namely the difference between the previous ones:

{a, T}′′ = {a, T} − {a, T}′ = [Xa, T ]

In fact this defines both a Lie representation

{{a, b}, T}′′ = [X{a,b}, T ] = [[Xa, Xb], T ] = [Xa, [Xb, T ]]− [Xb, [Xa, T ]]

= {a, {b, T}′′}′′ − {b, {a, T}′′}′′

and a Poisson action

{a, bT}′′ = [Xa, bT ] = b[Xa, T ] + {a, b}T = b{a, T}′′ + {a, b}T

so that { }′′ makes of EndK(A) a Poisson module.

Example 4.7 Consider the module DerA of derivations on the associative
algebra A: it is a submodule of EndK(A), but only one of the three Lie actions
we defined on EndK(A) sends derivations in derivations: the latter, which now
we write as

{a,X} = [Xa, X ]

and induces on DerA a Poisson structure.

The module DerA has many interesting submodules: the most important for
us is the module HA generated by Hamiltonian derivations which is of course
a submodule, since

[Xa,
∑

i

biXhi
] =

∑

i

(bi[Xa, Xhi
] + {a, bi}Xhi

) =
∑

i

(
biX{a,hi} + {a, bi}Xhi

)

Example 4.8 Be E and F two A-modules, and consider the space Hom K(E,
F ) of K-linear operators E −→ F : it is an A-module w.r.t. the adjoint action
aT (e) = a(Te); moreover notice that there’s also another natural structure
of A-module on Hom K(E, F ), namely the coadjoint one: aT (e) = T (ae), and
that these two structures induce on Hom K(E, F ) a bimodule structure.

Now consider the subspace Hom A(E, F ) of A-linear maps: T ∈ Hom A(E, F )
if and only if

T (ae) = aT (e)



Examples of Poisson Modules, I 13

(a ∈ A and e ∈ E). In other words, it is the space on which the two actions
do coincide.

If F is a Lie module then

{a, T}E(e) = {a, Te}

turns Hom K(E, F ) into a representation of the Lie algebra A; if F is Poisson
then Hom K(E, F ) is Poisson too. If E is a representation of the Lie algebra
A then we can consider the representation on Hom K(E, F ) given by

{a, T}F (e) = T{a, e}

If E is Poisson w.r.t. the associative coadjoint action then Hom K(E, F ) is
Poisson too.

Hence, in the case of the module Hom A(E, F ) we have two Lie structures,
and their difference

{a, T} = {a, T}E − {a, T}F

The latter induces on Hom A(E, F ) a structure of Poisson module whenever
F is:

{a, bT}(e) = {a, bTe} − bT{a, e} = b{a, Te} − bT{a, e} + {a, b}Te

= b{a, T}(e) + {a, b}T (e)

Example 4.9 The module ΩA of differentials is also a Poisson module via
the action

{a, ω} = LXa
ω

Since L[Xa,Xb] = [LXa
,LXb

] these brackets defines a Lie representation, which
is a Poisson structure since

a{b, ω} − {b, aω} = aLXb
ω −LXb

aω = aLXb
ω − {b, a}ω − aLXb

ω = {a, b}ω

We remark explicitly that this structure of Poisson module is compatible with
the Lie brackets on ΩA induced by the Poisson structure on A and defined
as5

{ω1, ω2} = Lπ#ω1
ω2 − Lπ#ω2

ω1 − dπ(ω1, ω2)

In fact: {da, ω} = LXa
ω = {a, ω}.

5Remember that the Poisson structure can be defined in terms of the Poisson tensor
π : ΩA ∧ ΩA −→ A: we write π# for the map ΩA −→ DerA such that π#da = Xa,
borrowing this notation from Differential Geometry.
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Notice that the Leibniz identity we gave in the definition of a Poisson module
is not the unique possible: in fact we could ask as well for the following
identity to hold:

{ab, e} = a{b, e} + b{a, e} (M)

This latter identity takes into account the associative product of the Poisson
algebra, while the former concerned the Poisson bracket.

For instance if E = A then the (M) identity is obviously satisfied; also for
E = A′, since

{ab, ϕ}(c) = ϕ({ab, c}) = ϕ(a{b, c}) + ϕ(b{a, c})

= (aϕ){b, c}+ (bϕ){a, c}

= {a, bϕ}(c) + {b, aϕ}(c)

Notice that

{a, be}+ {b, a} = b{a, e} − {a, b}e + a{b, e} − {b, a}e = a{b, e} + b{a, e}

and so the relationship between the two Leibniz identities is expressed by the

Lemma 4.10 {a, be}+ {b, ae} = a{b, e} + b{a, e}.

A Poisson module does not necessarily fulfils identity (M): it suffices to take
E = DerA:

{ab,D} = [Xab, D] = [aXb+bXa, D] = a[Xb, D]−(Da)Xb+b[Xa, D]−(Db)Xa

Definition 4.11 An A-module E is called multiplicative if it also a Lie mod-
ule and identity (M) holds for each a, b ∈ A and e ∈ E.

For example A and A′ (w.r.t. the Poisson structure we considered on them),
while, as just said, DerA is not, nor ΩA is multiplicative, since

{a, ω} = aLXb
ω + bLXa

ω + ω(Xb)da+ ω(Xa)db

EndK(A) is multiplicative only w.r.t. the Poisson structures we called { }
and { }′, but not w.r.t. the third one.

To complete the picture we give an example of multiplicative module which
is not Poisson: be g a Lie algebra and ρ : g −→ End (V ) a representation
of g; consider the Lie–Poisson algebra C∞(g∗) (one could work at a purely
algebraic level considering S(g∗) instead) and the space C∞(g∗, V ) of vector
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valued smooth functions on the linear manifold g∗; we claim that this is a
multiplicative module: here the action is (f ∈ C∞(g∗), ϕ ∈ C∞(g∗, V ) and
x ∈ g∗)

{f, ϕ}(x) = ρ(dfx)(ϕ(x))

(we consider a covector at a point as an element of the Lie algebra g: dfx ∈
T ∗
xg

∗ ∼= g∗∗ ∼= g); this defines a representation of the Lie algebra (C∞(g∗), { })
on C∞(g∗, V ), since

{{f, g}, ϕ}(x) = ρ(d{f, g}x)(ϕ(x)) = ρ([dfx, dgx])(ϕ(x))

= ρ(dfx)(ρ(dgx)(ϕ(x)))− ρ(dgx)(ρ(dfx)(ϕ(x)))

= {f, {g, ϕ}}(x)− {g, {f, ϕ}}(x)

This module is multiplicative:

{fg, ϕ}(x) = ρ(f(x)dgx + g(x)dfx)(ϕ(x)) = f(x){g, ϕ}(x) + g(x){f, ϕ}(x)

but it is not Poisson:

{f, gϕ}(x) = ρ(dfx)(g(x)ϕ(x)) = g(x)ρ(dfx)(ϕ(x)) = g(x){f, ϕ}(x)

Of course this example is of geometric nature: if G is a Poisson–Lie group and
E a vector bundle whose fibers are representations of the dual group G∗ then
the module of sections Γ(G,E) is multiplicative over the algebra C∞(G).

5 Simple constructions on Poisson modules

We want to set up a category of Poisson modules, so we need the concept
of a morphism between Poisson modules, but the most obvious one is not
the most suitable one: in fact the temptation is to define f : E −→ F as a
Poisson morphism if f(ae) = af(e) and f({a, e}) = {a, f(e)}, but in this case
we would have, when E = F = A:

f{a, b} = f({a, b · 1) = {a, b}f(1)

So we state the

Definition 5.1 If E and F are Poisson modules over A then a Poisson mor-
phism f : E −→ F is a CasA-linear map such that for a ∈ A and e ∈ E:

f{a, e} = {a, f(e)}
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For example, the Hamiltonian map X : A −→ HA is a Poisson morphism
(w.r.t. the Poisson module structures defined above), since

X{a,b} = [Xa, Xb] = {a,Xb}

and Xca = cXa when c ∈ CasA.
Another example of Poisson morphism is π# : ΩA −→ DerA:

π#{a, ω} = π#{da, ω} = [π#da, π#ω] = [Xa, π
#ω] = {a, π#ω}

The space Hom Pos(E, F ) of Poisson morphisms between two Poisson mod-
ules is again a Poisson module w.r.t. the action

{a, ϕ}(e) = ϕ{a, e}

and it is a multiplicative module whenever E is.
Notice that, if E = F = A then a Poisson morphism between the two

module structure is not a Poisson morphism of algebras.
A more interesting functorial construction is the following: be E and F

Poisson modules: then also E⊗AF has a natural structure of Poisson module
defined as

{a, e⊗ e′} = {a, e} ⊗ e′ + e⊗ {a, e′}

Of course this is a representation of the Lie algebra A and moreover

{a, be⊗ e′} = {a, be} ⊗ e′ + be⊗ {a, e′}

= b{a, e} ⊗ e′ − {b, a}e⊗ e′ + be⊗ {a, e′}

= b{a, e⊗ e′} − {b, a}e⊗ e′

If E and F are multiplicatives, also E ⊗A F is:

{ab, e⊗ e′} = a{b, e} ⊗ e′ + b{a, e} ⊗ e′ + e⊗ a{b, e′}+ e⊗ b{a, e′}

= a{b, e⊗ e′}+ b{a, e⊗ e′}

Now consider a Poisson algebra A and an A-module E which is also a rep-
resentation of the Lie algebra (A, {, }): we can define the spaces of derivations
w.r.t. associative and Lie module structure on E:

Der (A,E) = {X ∈ End K(A,E) | ∀a, b ∈ A X(ab) = aX(b) + bX(a)}

Der Lie(A,E) = {X ∈ End K(A,E) | ∀a, b ∈ A X{a, b} = {a,Xb}−{b,Xa}}

and their intersection

Can (A,E) = Der (A,E) ∩Der Lie(A,E)
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which we call space of canonical derivations with coefficients in E; of course
we have also Hamiltonian operators with coefficients in E, defined as

Xea = −{a, e}

and they form a subspace Ham (A,E) of Can (A,E).

Proposition 5.2 An A-module E is multiplicative if and only if there exists
a K-linear operator X : E −→ Der (A,E) such that

Xe{a, b} = XXeab+XXeba

and E is Poisson if and only if there exists a K-linear operator X : E −→
Der Lie(A,E) such that

Xae = aXe + {a,−}e

(thus Xaeb = aXeb+ {a, b}e).

Now we go back to some examples of the previous section: we remarked that
a Poisson ideal I in a Poisson algebra A is a Poisson module; of course A
is an extension with kernel I (in an obvious sense). As usual, suppose I to
be an abelian ideal (as Lie algebra: remember that our Poisson algebras are
all abelian in the associative sense) in A: then we can consider the quotient
Poisson algebra A/I, and I is a Poisson module over A/I too:

{a + I, i} = {a, i}

is well defined since I is abelian. On the other hand we can classify extensions
with abelian kernel in the following way: start with a Poisson algebra A and
a Poisson module E and consider its extensions B:

0 −→ E −→ B −→ A −→ 0

As usual to build B one just considers the vector space A⊕E equipped with
the operations

(a⊕ e)(a′ ⊕ e′) = aa′ ⊕ (ae′ + a′e)

{a⊕ e, a′ ⊕ e′} = {a, a′} ⊕ ({a, e′} − {a′, e})

Suppose A to be a Poisson algebra, E an A-module (w.r.t. the associative
structure) and define on A⊕ E the two previous operations:
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Proposition 5.3 A⊕E is a Poisson algebra if and only if E is a multiplica-
tive Poisson module.

Proof: Be A⊕ E a Poisson algebra: then define

a · e = (a⊕ 0)(0⊕ e) and {a, e} = {a⊕ 0, 0⊕ e}

Then axioms for a Poisson algebra imply exactly axioms for Poisson multi-
plicative structure on E. Vice versa, if E is a multiplicative Poisson module,
then A⊕E (according to the previous definitions of product and bracket) is
an associative algebra:

((a⊕ e)(a′ ⊕ e′))(a′′ ⊕ e′′) = (aa′)a′′ ⊕ ((aa′)e′′ + a′′(ae′ + a′e))

= (a⊕ e)(a′a′′ ⊕ (a′e′′ + a′′e′))

= (a⊕ e)((a′ ⊕ e′)(a′′ ⊕ e′′))

(notice that we used the commutativity of A at a crucial step) and it is also
a Lie algebra:

{{a⊕ e, a′ ⊕ e′}, a′′ ⊕ e′′} = {{a, a′}, a′′} ⊕ ({{a, a′}, e′′} − {a′′, {a, e′} −

−{a′, e}})

= {{a, a′}, a′′} ⊕ ({{a, a′}, e′′} − {a′′, {a, e′}}+

+{a′′, {a′, e}})

So the obstruction to the Jacobi identity reduces to the vanishing of

{{a, a′}, e′′} − {a′′, {a, e′}}+ {a′′, {a′, e}}+ {{a′, a′′}, e} − {a, {a′, e′′}}+

+ {a, {a′′, e′}}+ {{a′′, a}, e′} − {a′, {a′′, e}}+ {a′, {a, e′′}}

which in fact is zero, since {{a, a′}, e′′} = {a, {a′, e′′}} − {a′, {a, e′′}} and so
on, being E a representation of the Lie algebra A.
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Finally we come to the Leibniz identity:

{(a⊕ e)(a′ ⊕ e′), a′′ ⊕ e′′} = {aa′, a′′} ⊕ ({aa′, e′′} − {a′′, ae′ + a′e})

= (a{a′, a′′}+ a′{a, a′′})⊕ (a{a′, e′′}+

+ a′{a, e′′} − {a′′, ae′} − {a′′, a′e})

= a{a′, a′′} ⊕ (a{a′, e′′} − a{a′′, e′} −

− {a′, a′′}e) + a′{a, a′′} ⊕

⊕ (a′{a, e′′} − a′{a′′, e} − {a, a′′}e′)

= (a⊕ e){a′ ⊕ e′, a′′ ⊕ e′′}+

+ (a′ ⊕ e′){a⊕ e, a′′ ⊕ e′′}

Notice that we used both Poisson and multiplicative structure on E to get
the result.

qed

Of course if E is a multiplicative Poisson module then it is also an ideal
in A⊕E, and moreover {E,E} = 0 and E ·E = 0 by definition of {, } and ·
on A⊕ E.

6 Cohomology and representations of Poisson

algebras

We considered so far two constructions which fit very well into a cohomological
framework: the quotient Can (A,E)/Ham(A,E) and the extension of Poisson
algebras by means of a multiplicative Poisson module.

And in fact one can consider, given a Poisson module E over a Poisson
algebra A, the complex of multilinear skew-symmetric maps P : A∧...∧A −→
E with the coboundary operators (of degree +1)

(δP )(a0 ∧ a1 ∧ ... ∧ an) =
n∑

i=0

(−1)i{ai, P (a0 ∧ ... ∧ âi ∧ ... ∧ an)}

+

0...n∑

i<j

(−1)i+jP ({ai, aj} ∧ a0 ∧ ... ∧ âi ∧ ... ∧ âj ∧ ... ∧ an)

and the cohomology H•(A,E) of this complex.
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Proposition 6.1

(1) H0(A,E) = CasE = {e ∈ E | ∀a ∈ A {a, e} = 0};
(2) H1(A,E) = Can (A,E)/Ham(A,E);
(3) H2(A,E) = {extensions 0 −→ E −→ B −→ A}/{trivial extensions}.

Proof: (1) is trivial; (2) follows from δP (a ∧ b) = {a, P (b)} − {b, P (a)} −
P{a, b} which implies Can (A,E) = Z1(A,E), and P (a) = δQ(a) = {a,Q}
which implies Ham (A,E) = B1(A,E).

Next we come to (3): it is a standard result for Lie algebras, however we
show the explicit computations: an abelian extension 0 −→ E −→ B −→ A
determines a linear section L : A −→ B of the projection B −→ A; this is a
morphism of Poisson algebras if and only if

{L(a), L(a′)} − L{a, a′} = 0 and L(a)L(a′)− L(aa′) = 0

Define a map P : A ∧A −→ B as

P (a ∧ a′) = {L(a), L(a′)} − L{a, a′}

(Notice that the action of A on E is given by {L(a), e} = {a, e} since L is a
section, so that L(a) = a′ + e′.)

Now: P is a cocycle in Z2(A,E): indeed P (a ∧ a′) is in the kernel of the
projection B −→ A, thus its image is in E; moreover

δP (a ∧ a′ ∧ a′′) = {a, {L(a′), L(a′′)} − L{a′, a′′}} − {a′, {L(a), L(a′′)} −

− L{a, a′′}}+ {a′′, {L(a), L(a′)} − L{a, a′}} −

− {L{a, a′}, L(a′′)}+ L{{a, a′}, a′′}+

+ {L{a, a′′}, L(a′)} − L{{a, a′′}, a′}+

− {L{a′, a′′}, L(a)}+ L{{a′, a′′}, a}

= {a, {L(a′), L(a′′)}} − {a′, {L(a), L(a′′)}}+

+ {a′′, {L(a), L(a′)}} − {L{a, a′}, L(a′′)}+

+ {L{a, a′′}, L(a′)} − {L{a′, a′′}, L(a)}

= {a, {a′, L(a′′)}} − {a′, {a, L(a′′)}}+ {a′′, {a, L(a′)}}+

−{{a, a′}, L(a′′)}+ {{a, a′′}, L(a′)} − {{a′, a′′}, L(a)}

= 0

(we used Jacoby identity, ImL ⊂ E and the fact that {a, e} = {L(a), e}).
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Now suppose P to be a couboundary: then

P (a ∧ a′) = δQ(a ∧ a′) = {a,Q(a′)} − {a′, Q(a)} −Q{a, a′}

so that R = L−Q : A −→ E is such that

{R(a), R(a′)} = {L(a), L(a′)} − {L(a), Q(a′)} − {Q(a), L(a′)}+

+ {Q(a), Q(a′)}

= P (a ∧ a′) + L{a, a′} − {a,Q(a′)}+ {a′, Q(a)}+

+ {Q(a), Q(a′)}

= L{a, a′} −Q{a, a′} = R{a, a′}

(remember that Q(a) ∈ E which is an abelian ideal).
So we find that P is a coboundary if and only if there’s a Lie algebra

morphism A −→ B which is a section of the projection B −→ A, thus if and
only if the extension is trivial.

qed

Notice that this cohomological framework does not take into account the
full Poisson algebra structure, but simply the Lie algebra one: indeed the
cohomology we defined is the Lie algebra cohomology of A with coefficients
in E; to let the associative structure play a role as well we have to consider
a slightly different cohomology, which we’ll introduce again by means of a
complex rather than in terms of homological algebra.

Remember that the Poisson structure on A induces a Lie algebra structure
on ΩA:

Definition 6.2 A representation of a Poisson algebra A is an A-module E
(w.r.t. associative structure) which is also a representation of the Lie algebra
ΩA such that

[ω, ae] = a{ω, e} − iXa
ωe

for each ω ∈ ΩA, a ∈ A and e ∈ E, where [ω, e] stands for the Lie action of
ΩA on E.

If E is a representation of a Poisson algebra A, by putting

{a, e} = [da, e]

we get an action of the Lie algebra A on E:

{{a, b}, e} = [d{a, b}, e] = [{da, db}, e] = [da, [db, e]]− [db, [da, e]]

= {a, {b, e}} − {b, {a, e}}
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such that E becomes a Poisson module:

{a, be} = [da, be] = b[da, e]− {b, a}e = b{a, e} + {a, b}e

Moreover, notice that if the same Poisson structure { } on E is induced by
the same representations [ ] and [ ]′ then

[da, e] = {a, e} = [da, e]′

thus these representations do coincide on exact differentials; of course this
does not imply that they have to coincide on the all ΩA (which is generated
by the exact differentials as an A-module and not as a K-vector space), unless
the following condition is fulfilled

Definition 6.3 A multiplicative representation of a Poisson algebra A is a
representation E of A such that

[aω, e] = a[ω, e]

for each a ∈ A, ω ∈ ΩA and e ∈ E.

If E is multiplicative, as a representation, then the induced structure of Pois-
son module is multiplicative too (in the sense of Poisson modules):

{ab, e} = [adb, e] + [bda, e] = a[db, e] + b[da, e] = a{b, e}+ b{a, e}

and the representation determines a unique structure of module.
So we have a map

d : {Representations} −→ {Poisson modules}

which, in general, is not surjective. It is indeed clear that a Poisson structure
module on E induces on the exact differentials a well-defined action

[db, e] = {b, e}

which is however impossible to extend to a representation of ΩA: a natural
definition would be

[adb, e] = a{b, e}

This position does define a representation of the Lie algebra ΩA: indeed it
turns out that

[{adb, cde}, m] = [c{adb, de}+ a{b, c}de,m]

= [ac{db, de} − c{e, a}db+ a{b, c}de,m]

= ac{b, {e,m}}+ a{b, c}{e,m} − ac{e, {b,m}} −

− c{e, a}{b,m}

= [adb, [cde,m]]− [cde, [adb,m]]
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Moreover

[adb, ce] = a{b, ce} = ac{b, e} + a{b, c}e = c[adb, e]− (Xcadb)e

Notice that such a representation would be multiplicative, by definition:

[adb, e] = a{b, e} = a[db, e]

The rub is that in general ΩA is not A-free: we could have

ω =
∑

i

aidbi =
∑

j

cjdej

so that ∑

i

ai{bi, e} = [ω, e] =
∑

j

cj{ei, e}

while it is not true in general that the first and third member of this equality
are the same. Thus the representation induced by the Poisson structure is
not always well-defined; since it is always multiplicative, it can be defined
only starting from a multiplicative Poisson structure on E: so of the map

d : {Representations} −→ {Poisson modules}

we can say that

Proposition 6.4

(1) d induces, by restriction, an injective map

{
Multiplicative representations

}
−→

{
Multiplicative

Poisson modules

}

(2) If ΩA is a free A-module then d is bijective.

If E is a representation of the Poisson algebra A, then we can define a coho-
mology H•

π(A,E) and a homology Hπ
• (A,E) of A with coefficients in E, as

the cohomology and the homology of the Lie algebra ΩA with coefficients in
the representation E. Obviously, in the case E = A and w.r.t. the adjoint
representation

[ω, a] = π#ω(a)

we get the Poisson cohomology and homology as defined by Lichnerowicz and
Koszul (cf. [7, §5]).
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The representations of a Poisson algebra of course do form a category,
whose morphisms are the linear operators

f : E −→ F

between representation spaces which are both A-linear and morphisms be-
tween representations of the Lie algebra ΩA:

f(ae) = af(e) and f [ω, e] = [ω, f(e)]

With this definition, the map d previously considered becomes a covariant
functor: indeed if f : E −→ F is a morphism of representations, then it
induces a morphism of modules, since

f{a, e} = f [da, e] = [da, f(e)] = {a, f(e)}

The functorial properties of these cohomology and homology are the usual
ones: if f : A −→ B is a morphism of Poisson algebras then it induces a
morphism Ωf : ΩA −→ ΩB defined as

Ωf(adb) = f(a)df(b)

and such that

Ωf{adb, cde} = {Ωf(adb),Ωf(cde)}

So, if E is a representation of B then the Poisson algebra morphism f : A −→
B induces a representation f ∗E of A which, as a vector space is the same,
endowed with the actions

a · e = f(a) · e and [ω, e] = [Ωf(ω), e]

This morphism induces in turn algebra morphisms

Hπ
• (A, f

∗E) −→ Hπ
• (B,E) and H•

π(B,E) −→ H•
π(A, f

∗E)

However, in the geometrical case, the one we are actually interested in,
this functoriality is not the “right” one: if A = C∞(M) and B = C∞(N)
are the Poisson algebras of two Poisson manifolds M and N , a Poisson map
F : M −→ N does not define a morphism of Poisson representations: indeed
A is a representation of Ω1(M) and B a representation of Ω1(N), but it is
not true that F ∗B = A; this explains why Poisson cohomology, as usually is
defined, is not functorial.

Now, we guess, the reader needs some example.
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Example 6.5 DerA is a Poisson representation w.r.t.

[ω,X ] = [π#ω,X ]

In fact

[{ω1, ω2}, X ] = [π#{ω1, ω2}, X ] = [[π#ω1, π
#ω2], X ]

= [π#ω1, [π
#ω2, X ]]− [π#ω2, [π

#ω1, X ]]

= [ω1, [ω2, X ]]− [ω2, [ω1, X ]]

Leibniz identity is obvious

[ω, aX ] = [π#ω, aX ] = a[π#ω,X ] + π(ω ∧ da)X = a[ω,X ]− iXa
ωX

Notice that this is not a multiplicative representation.

Example 6.6 ΩA is a Poisson representation by means of

a · ω = aω and [ω1, ω2]
′ = {ω1, ω2}

Indeed [ ]′ are Lie brackets and

[ω1, aω2]
′ = {ω1, aω2} = a{ω1, ω2}+ π(ω1 ∧ da)ω2 = a{ω1, ω2} −Xaω1ω2

Again, this is not a multiplicative representation.

Example 6.7 Consider another Poisson representation on ΩA:

[ω1, ω2]
′′ = Lπ#ω1

ω2

Since L[π#ω1,π#ω2] = [Lπ#ω1
,Lπ#ω2

] this defines a Lie action, which is Poisson
because

[ω1, aω2]
′′ = Lπ#ω1

aω2 = π(ω1 ∧ da)ω2 + a[ω1, ω2]
′′ = a[ω1, ω2]

′′ −Xaω1ω2

but, as before, this is not a multiplicative representation.

All these examples satisfy the following

Definition 6.8 A representation E of a Poisson algebra is said to be regular
if, for each c ∈ CasA and for all e ∈ E: [dc, e] = 0.
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Of course DerA is regular, because π#dc = Xc = 0, and ΩA is regular (both
w.r.t. [ ]′ and to [ ]′′) because

{dc, ω} = LXc
ω − dπ#ω(c)− dπ(dc ∧ ω) = −dπ(ω ∧ dc) + dπ(ω ∧ dc) = 0

Obviously these examples correspond to the already known Poisson mod-
ule structures on DerA and on ΩA:

[da,X ] = [Xa, X ] = {a,X}

while both [ ]′ and [ ]′′ give rise to the same Poisson structure:

[da, ω]′ = {da, ω} = LXa
ω−Lπ#ωda−dπ(da∧ω) = {a, ω} = [da, ω]′′ = LXa

ω

However non every Poisson module we met till now is induced by some
representation: for example the dual (vector space) A′ is not a representation
w.r.t. the coadjoint actions:

[ω, ϕ] = ϕ ◦ π#ω

This is indeed only a skew-representation of the Lie algebra ΩA

[{ω1, ω2}, ϕ] = ϕ(π#{ω1, ω2})) = ϕ([π#ω1, π
#ω2])

= ϕ(π#ω1(π
#ω2))− ϕ(π#ω2(π

#ω1))

= [ω1, ϕ](π
#ω2)− [ω2, ϕ](π

#ω1)

= [ω2, [ω1, ϕ]]− [ω1, [ω2, ϕ]]

and, above all, it does not satisfy Leibniz identity, since

[ω, aϕ] = a[ω, ϕ]

7 Connections and Poisson modules

Cohomologies considered so far are essentially two: de Rham cohomology,
thus the cohomology of the Lie algebra DerA, and Poisson cohomology, thus
the cohomology of the Lie algebra ΩA; however another cohomology naturally
arise in our context: the cohomology with coefficients in the module HA; this
module in some respects resembles DerA, being in fact a submodule of it, in
other respects resembles ΩA, being for instance a differential module.

Suppose E to be a representation of A: we can define

[X, e] = [ω, e]
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where π#ω = X , using the action of ΩA on E.
If E is a regular representation then this definition makes sense: indeed

from π#ω1 = π#ω2 = X it follows that ω2 = ω1+ϕ, where ϕ ∈ ker π#, hence

[ω2, e] = [ω1, e] + [ϕ, e] = [ω1, e]

since, for a regular representation, [dc, e] = 0 as c ∈ CasA, and this subalge-
bra generates the module ker π#.

Therefore a regular representation induces a Lie action of HA on E: ob-
viously it is a Lie action

[[X1, X2], e] = [[π#ω1, π
#ω2], e] = [π#{ω1, ω2}, e] = [{ω1, ω2}, e]

= [ω1, [ω2, e]]− [ω2, [ω1, e]] = [X1, [X2, e]]− [X2, [X1, e]]

Leibniz identity for the representation becomes

[X, ae] = [π#ω, ae] = [ω, ae] = a[ω, e]− iXa
ωe = a[X, e] + π(ω ∧ a)e

= a[X, e] + iπ#ωdae = a[X, e] + (Xa)e

Proposition 7.1 If E is a representation of the Lie algebra HA satisfying
Leibniz identity

[X, ae] = a[X, e] + (Xa)e

which is also an A-module, then E is induced from a regular representation
of A.

Proof: The only natural thing to do is to define, for ω ∈ ΩA and e ∈ E

[ω, e] = [π#ω, e]

in this way we get, by the computations just made, a representation of the
Lie algebra ΩA, which satisfies Leibniz identity. Its regularity follows from

[dc, e] = [π#dc, e] = [Xc, e] = 0

qed

Thus regular representations may be thought as objects defined on HA.

Example 7.2 The representation DerA, which is regular, gives rise to the
adjoint representation of the Lie algebra HA, thus the Lie action is exactly
the commutator of a derivation in HA with an arbitrary one.
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When ΩA and the representation is defined as [ω1, ω2] = {ω1, ω2} we get

[X,ω] = LXω −Lπ#ωπ
#−1X − diπ#π#−1Xω

= LXω −Lπ#ωπ
#−1X − diXω

= iXdω − diπ#ωπ
#−1X − iπ#ωdπ

#−1X

while, when the representation is defined as [ω1, ω2] = Lπ#ω1
ω2 we find

[X,ω] = LXω

Next we come to cohomology: if E is a regular representation of A we
can consider the complex Cn(HA, E) = Hom K(H

n
A, E) equipped with the

coboundary maps

dP (X0, ..., Xk) =

k∑

i=0

(−1)i[Xi, P (X0, ..., X̂i, ..., Xk)] +

+
0...k∑

i<j

(−1)i+jP ([Xi, Xj ], X0, ..., X̂i, ..., X̂j, ..., Xk)

The cohomology H(HA, E) of this complex is connected to Poisson brack-
ets on A; of course the map ΩA −→ HA induces a map in cohomology

π∗ : H(HA, E) −→ H∇(A,E)

If the Poisson structure is non-degenerate, then π is an isomorphism, and, a
fortiori , also π∗ is; if the Poisson structure is null then Hπ(A,E) coincides
with the cochain space, while H(HA, E) = 0 (for positive degrees); thus
this cohomology is somewhat reduced if compared with Poisson cohomology,
hence more simple to compute.

Of course for each differential A-module (D, δ) which is also a Lie algebra
and for each Poisson A-module E we can perform a similar construction: in
particular we can consider the case D = HA; remember that in this case the
differential map is X : A −→ Ham (A) extended as

X(aX(b)) = X(a) ∧X(b)

and that we have a contraction i : HamA × HA −→ A which allows us to
define a coboundary map

iX0∧...∧Xn
X(P ) =

n∑

i=0

(−1)iiXi
i
X0∧...X̂i...∧Xn

P

+
∑

i<j

(−1)i+ji[Xi,Xj ]∧X0∧...X̂i...X̂j...∧Xn
P
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for P ∈
∧nHamA and Xi = Xai ∈ HamA.

For example

iXa∧Xb
X(P ) = iXa

iXb
P − iXb

iXa
P − iX{a,b}

P

(remember that iXa
Xb = {a, b}).

Of course these cohomologies are connected by a commutative diagram

HdR(ΩA)

��

// Hπ(A)

��
HdR(HA) // Hπ(HA, A)

where vertical arrows are induced by π# : ΩA −→ HA.
Now, if E is an A-module and ∇ : E −→ E ⊗HA a flat HA-connection,

the spaces E ⊗
∧
HA defines a complex whose cohomology we denote by

H∇(HA, E). Yet there’s another commutative diagram

H∇(ΩA, E)

��

// Hπ(E)

��
H∇(HA, E) // Hπ(HA, E)

Now we consider HA-connections on A-modules, where A is a Poisson
algebra.

Definition 7.3 A HA-connection in an A-module E is said to be a Hamil-
tonian connection.

Such a connection determines (and is determined by) a covariant Hamiltonian
derivative D : HA −→ End K(E) such that

DX(ae) = aDXe+X(a)e

Suppose the A-module E equipped with such a connection: then if we put

{a, e} := DXa
e

we get a K-bilinear map { } : A×E −→ E such that

{a, be} = DXa
(be) = bDXa

e+Xa(b)e = b{a, e}+ {a, b}e

Furthermore

{ab, e} = DXab
e = DaXb

e+DbXa
e = aDXb

e + bDXa
e = a{b, e} + b{a, e}
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Hence, for the brackets { } to endow E with a multiplicative Poisson module
structure it suffices that they define a Lie action: the obstruction to this fact
is represented by the vanishing of

R(a, b)(e) = {a, {b, e}} − {b, {a, e}} − {{a, b}, e}

= DXa
DXb

e−DXb
DXa

e−DX{a,b}
e

= [DXa
,DXb

]−D[Xa,Xb] = RD(Xa, Xb)

and this means that the brackets { } defines a Lie representation if and only
if the connection ∇ is flat.

Now, if two Hamiltonian connections ∇ and ∇′ determines the same Pois-
son structure { } on E then the A-linear map ∇−∇′ ∈ End (E) is such that,
for each a ∈ A:

iXa
(∇e−∇′e) = 0

and so, since the contraction i : HA ×HA −→ A is non-degenerate, ∇ = ∇′.
So there exists an injective map

{flat HA-connections} −→ {multiplicative structures on E}

In general this map is not surjective, and this amounts to say that not every
multiplicative Poisson structure is induced by a flat connection: it suffices to
consider non projective modules (so modules without connections): for exam-
ple on a compact manifold consider the module of distributions D(M)′ (thus
of the continuous linear functionals on the Fréchet space C∞(M)) w.r.t. the
coadjoint Poisson structure: if f, ϕ ∈ C∞(M) and T ∈ D(M)′

{f, T}(ϕ) = T{f, ϕ}

This is a multiplicative Poisson structure, but the module D(M)′ is not pro-
jective.

To be able to induce a connection from a multiplicative Poisson structure it
suffices for example that the moduleHA generated by Hamiltonian derivations
is free on A: indeed if HA = An then we can write every one of its elements
X as X =

∑
i aiXhi

where ai, hi ∈ A are uniquely determined. Then, if { } is
a multiplicative Poisson structure on the module E, we can define a covariant
Hamiltonian derivation D as

D∑
i aiXhi

e =
∑

i

ai{hi, e}
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This makes sense exactly since HA is a free module, and defines a K-bilinear
map; moreover, if X ∈ HA

DaXe = Da
∑

i aiXhi
e = D∑

i aaiXhi
e =

∑

i

aai{hi, e} = a
∑

i

ai{hi, e}

Leibniz identity for the covariant derivative comes from

DXae = D∑
i aiXhi

ae =
∑

i

ai{hi, ae} =
∑

i

ai({hi, a}e + a{hi, e})

= a
∑

i

ai{hi, e}+
∑

i

aiXhi
(a)e = aDXe +X(a)e

Finally let’s show that the induced connection is flat:

D[aXh,bXk] = Dab[Xh,Xk] +DaXh(b)Xk
−DbXk(a)Xh

= abD[Xh,Xk] + aXh(b)DXk
− bXk(a)DXh

= abDXh
DXk

+ aXh(b)DXk
− abDXk

DXh
− bXk(a)DXh

= DaXh
DbXk

−DbXk
DaXh

By linearity, the result holds in general; we used the identity [DXh
,DXk

] =
D[Xh,Xk] which amounts to claim that the action of the Poisson module is a
Lie action:

DX{h,k}
e = {{h, k}, e} = {h, {k, e}} − {k, {h, e}} = DXh

DXk
e−DXk

DXh
e

Therefore

Theorem 7.4 If the module HA is free on A then there exists a 1-1 corre-
spondence between flat HA-connections and multiplicative Poisson structures
on an A-module.

The map

{flat HA-connections} −→ {multiplicative Poisson structures on E}

splits as

{flat HA-connections} −→

{
multiplicative

representations

}
−→

{
multiplicative

Poisson modules

}
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Indeed a HA-connection ∇ : E −→ E⊗HA (or better its covariant deriva-
tive) determines a representation E as

[ω, e] = Dπ#ωe

since (π# is skew-symmetric)

[ω, ae] = Dπ#ωae = a[ω, e] + iπ#ωda⊗ e = a[ω, e]− iXa
ω ⊗ e

obviously it is a multiplicative representation

[aω, e] = Daπ#ωe = aDπ#ωe = a[ω, e]

Notice that the map which sends a HA-connection into a representation is
injective but, in general, not surjective: however we can characterize its image
as the space of regular multiplicative representations, thus those such that
[ω, e] = 0 if ω ∈ ker π#. In fact if [ ] is such a representation then the definition

DXe = [π#−1X, e]

makes sense, since if ω ∈ π#−1X then ω = π#−1X + γ where γ is a form
which vanishes on an element of the space HA: it follows, by regularity of the
representation, that

DXe = [π#−1X, e] = [π#−1X + γ, e] = Dπ#ωe
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