Capitolo 7

SPAZI DI HILBERT E TEORIA DI FOURIER

In questo capitolo ci concentriamo sugli spazi di Hilbert: per questi spazi si possono generalizzare molte nozioni geometriche valide negli spazi euclidei, ad esempio i procedimenti di ortogonalizzazione, che forniscono i sistemi ortonormali completi: questi ultimi si inquadrano nella teoria di Fourier, della quale ci occuperemo in fondo al capitolo, e che costituisce il primo e principale esempio di applicazione degli spazi di Hilbert

7.1 Basi ortonormali negli spazi di Hilbert

Uno spazio di Hilbert, come ogni spazio vettoriale, possiede delle basi, che tuttavia si dimostrano inadatte a descriverne la geometria, dato che "ignorano" l'esistenza del prodotto hilbertiano; il concetto "giusto" di base per uno spazio di Hilbert è quello di sistema ortonormale completo.

7.1.1 Definizione Un sistema ortonormale in uno spazio di Hilbert \mathcal{H} è una famiglia $\{e_{\alpha}\}_{{\alpha}\in A}$ di elementi di \mathcal{H} di norma 1 ($\forall {\alpha}\in A \mid |e_{\alpha}||=1$) tali che

$$\forall \alpha, \beta \in A \quad (e_{\alpha}, e_{\beta}) = \delta_{\alpha\beta}$$

A priori un sistema ortonormale può essere del tutto insufficiente a descrivere la totalità degli elementi di uno spazio di Hilbert; per questo diamo la

- **7.1.2 Definizione** Un sistema ortonormale $\{e_{\alpha}\}_{{\alpha}\in A}$ si dice base ortonormale (b.o.) se il sottospazio $\sum_{\alpha} e_{\alpha}\mathbb{C}$ (generato dalla famiglia $\{e_{\alpha}\}_{{\alpha}\in A}$) è denso in \mathcal{H} .
- **7.1.3 Proposizione** Se $\{e_{\alpha}\}_{{\alpha}\in A}$ è un sistema ortonormale in uno spazio di Hilbert \mathcal{H} allora le sequenti proposizioni sono equivalenti:

- $\{e_{\alpha}\}_{{\alpha}\in A}$ è una base ortonormale.
- $Se \ \forall x \in \mathcal{H} \ \forall \alpha \in A \ (e_{\alpha}, x) = 0 \ allora \ x = 0.$
- $\forall x \in \mathcal{H}$ $||x||^2 = \sum_{\alpha} |(e_{\alpha}, x)|^2$ (identità di Parceval).
- $\forall x \in \mathcal{H}$ $x = \sum_{\alpha} (e_{\alpha}, x) e_{\alpha}$.

DIMOSTRAZIONE: (1) \iff (2) è ovvio per definizione di densità.

(1) \iff (4) Segue dal fatto che $\overline{M} = M^{\perp \perp}$; infatti se $B \subset A$ è finito e N è il sottospazio generato da $\{e_{\beta}\}_{{\beta} \in B}$, che è chiuso, allora per $x \in \mathcal{H}$:

$$x_N = \sum_{\beta \in B} (e_\beta, x) e_\beta$$

e, se M_0 è il sottospazio (non chiuso!) generato da $\{e_\alpha\}_{\alpha\in A}$, si ha che, per $x\in M_0$:

$$x = \sum_{\alpha \in A} (e_{\alpha}, x) e_{\alpha}$$

е

$$||x||^2 = \sum_{\alpha \in A} |(e_{\alpha}, x)|^2$$

(ove le somme sono estese ad un numero finito di termini non nulli). Consideriamo ora il sottospazio N_0 denso in $l^2(A)$ definito come

$$N_0 := \{ f : A \longrightarrow \mathbb{C} \mid \operatorname{Card} \{ \alpha \in A \mid f(\alpha) \neq 0 \} < \infty \}$$

L'applicazione

$$\Phi: N_0 \longrightarrow M_0$$
$$f \longmapsto \sum_{\alpha \in A} f(\alpha)e_\alpha$$

è una isometria lineare e suriettiva. Ma sia $L^2(A)$ che \mathcal{H} sono completi e quindi Φ si estende per continuità ad una funzione

$$\widetilde{\Phi}: l^2(A) \longrightarrow \mathcal{H}$$

lineare isometrica e suriettiva, i.e. un isomorfismo di spazi di Hilbert. Quindi, per ogni $x \in M$ esiste $f \in l^2(A)$ tale che $x = \sum_{\alpha \in A} f(\alpha) e_{\alpha}$ e quindi esiste $\alpha_0 \in A$ tale che $f(\alpha_0) = (e_{\alpha_0}, x)$. Quindi (1) \iff (4).

Inoltre

$$||x_{M^{\perp}}||^2 = ||x||^2 - ||x_M||^2 = ||x||^2 - \sum_{\alpha \in A} |(x, e_{\alpha})|^2$$

da cui, per ogni $x \in \mathcal{H}$:

$$\sum_{\alpha \in A} |(x, e_{\alpha})|^2 \le ||x||^2$$

e quindi l'equivalenza $(1) \iff (3)$.

QED

Notiamo due conseguenze della dimostrazione:

7.1.4 Corollario Se $\{e_{\alpha}\}_{{\alpha}\in A}$ è una base ortonormale in uno spazio di Hilbert \mathcal{H} allora $\mathcal{H}\cong l^2(A)$.

Cioè spazi di Hilbert che ammettano basi della stessa cardinalità sono isomorfi a $l^2(A)$ e quindi fra loro.

7.1.5 Corollario (IDENTITÀ DI BESSEL)

$$\sum_{\alpha \in A} |(x, e_{\alpha})|^2 \le ||x||^2$$

7.1.6 Teorema Uno spazio di Hilbert ha sempre una base ortonormale.

DIMOSTRAZIONE: La famiglia \mathcal{S} formata dai sistemi ortonormali in \mathcal{H} è un insieme parzialmente ordinato dall'inclusione (e non vuoto, visto che un qualsiasi vettore di norma 1 forma da solo un sistema ortonormale). Se Σ è una catena in \mathcal{S} (i.e. per ogni $S, S' \in \Sigma$ si ha $S \subset S'$ oppure $S' \subset S$) allora l'insieme unione di Σ :

$$\bigcup_{S \in \Sigma} S$$

è un sistema ortonormale: se $x, y \in \bigcup_{S \in \Sigma} S$ allora esistono $S, S' \in \Sigma$ tali che $x \in S$ e $y \in S'$ e quindi, dato che Σ è una catena, si ha $x, y \in S \subset S'$ oppure $x, y \in S' \subset S$: in ogni caso x, y appartengono ad un medesimo sistema ortonormale (che sia S o S') e quindi devono verificare la $(x, y) = \delta_{x,y}$.

Inoltre l'insieme $\bigcup_{S \in \Sigma} S$ è evidentemente un confine superiore della famiglia Σ rispetto all'ordine \subset e quindi, per il lemma di Zorn, l'insieme S dei sistemi ortonormali ammette un elemento massimale: per definizione di massimalità (e per la (2) della proposizione precedente) questo massimale deve essere una base ortonormale; infatti la massimalità di una base è ovvia, mentre un sistema ortonormale massimale S che non sia una base è tale che $S^{\perp} \neq 0$ e quindi deve esistere $e \in S^{\perp}$ con ||e|| = 1 in modo che $S \cup \{e\}$ sia un sistema ortonormale, contro la massimalità di S.

QED

7.1.7 Definizione La cardinalità di una base ortonormale in uno spazio di Hilbert si dice dimensione hilbertiana dello spazio.

Evidentemente se la dimensione di \mathcal{H} come spazio vettoriale è finita allora anche la dimensione hilbertiana lo è e questi due numeri coincidono. In generale questo non sarà vero: molti spazi di funzioni, ad esempio $L^2(\mathbb{R})$, avranno dimensione hilbertiana numerabile (lo vedremo fra breve rammentando che si tratta di uno spazio separabile): tuttavia $L^2(\mathbb{R})$, come spazio vettoriale, ha dimensione continua: i suoi punti sono parametrizzati dagli elementi di \mathbb{R} .

Nel caso generale non è ovvio nemmeno che tutte le basi ortonormali abbiano la stessa cardinalità.

7.1.8 Teorema Tutte le basi ortonormali in uno spazio di Hilbert hanno la stessa cardinalità, che è poi pari alla dimensione hilbertiana.

DIMOSTRAZIONE: Siano $\{e_{\alpha}\}_{{\alpha}\in A}$ e $\{f_{\beta}\}_{{\beta}\in B}$ basi ortonormali di \mathcal{H} , allora

$$\forall \alpha \in A \quad e_{\alpha} = \sum_{\beta \in B} (f_{\beta}, e_{\alpha}) f_{\beta}$$

Ma l'insieme

$$G_{\alpha} := \{ \beta \in B \mid (f_{\beta}, e_{\alpha}) \neq 0 \}$$

è numerabile, quindi l'unione $B=\bigcup_{\alpha\in A}G_\alpha$ è una unione di insiemi numerabili indicizzata da A:

$$\operatorname{Card}(B) \leq \operatorname{Card}(A) \cdot \aleph_0 = \operatorname{Card}(A)$$

(stiamo supponendo Card(A) infinita, i.e. $\geq \aleph_0$).

Viceversa, scrivendo gli elementi f_{β} in termini della base $\{e_{\alpha}\}_{{\alpha}\in A}$ otteniamo

$$\operatorname{Card}(A) \leq \operatorname{Card}(B)$$

e quindi, per il teorema di Cantor-Bernstein: Card(A) = Card(B).

QED

7.1.9 Teorema Gli spazi di Hilbert di dimensione hilbertiana numerabile (o finita) sono tutti e soli quelli separabili¹.

DIMOSTRAZIONE: Il caso di dimensione finita segue ovviamente da quello di dimensione numerabile.

¹Cioè che contengono una successione densa.

Sia la dimensione hilbertiana di \mathcal{H} numerabile: allora esiste una base ortonormale $\{e_n\}_{n\in\mathbb{N}}$ ed, evidentemente, il sottospazio

$$\sum_{n\in\mathbb{N}} (\mathbb{Q} + i\mathbb{Q})e_n$$

è denso in $\sum_{n\in\mathbb{N}} \mathbb{C}e_n$, la cui chiusura è \mathcal{H} .

Sia viceversa lo spazio \mathcal{H} è separabile; dimostreremo che possiede una base ortonormale indicizzata da \mathbb{N} . Sia $\{x_n\}_{n\in\mathbb{N}}$ una successione di vettori totale², che deve esistere per l'ipotesi di separabilità: usando un procedimento alla Gram-Schmidt la renderemo ortonormale in modo da avere la base voluta.

Basta per questo osservare che il sottospazio M_n generato dall'insieme finito di vettori $\{x_1, ..., x_n\}$ è chiuso (perché ha dimensione finita e quindi è completo) e ovviamente non contiene x_{n+1} . Decomponiamo allora x_{n+1} secondo la somma diretta $M_n + M_n^{\perp}$ e chiamiamo y_{n+1} la componente di x_{n+1} in M_n^{\perp} . Ponendo per ogni $n \in \mathbb{N}$:

$$e_n := \frac{y_{n+1}}{\|y_{n+1}\|}$$

otteniamo ovviamente un sistema ortonormale in \mathcal{H}

QED

La seguente definizione è di fondamentale importanza:

7.1.10 Definizione Un operatore unitario fra due spazi di Hilbert \mathcal{H}_1 e \mathcal{H}_2 è un operatore $U: \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ lineare isometrico tale che

$$U^* = U^{-1}$$

Un operatore unitario è una realizzazione concreta di un isomorfismo fra spazi di Hilbert: in particolare

7.1.11 Teorema Se due spazi di Hilbert \mathcal{H}_1 e \mathcal{H}_2 hanno la stessa dimensione hilbertiana allora esiste un operatore unitario $U: \mathcal{H}_1 \longrightarrow \mathcal{H}_2$.

DIMOSTRAZIONE: Possiamo per ipotesi scegliere due basi ortonormali $\{e_{\alpha}\}_{{\alpha}\in A}$ e $\{f_{\alpha}\}_{{\alpha}\in A}$ in \mathcal{H}_1 e \mathcal{H}_2 indicizzate dallo stesso insieme A. Quindi esistono gli isomorfismi di spazi di Hilbert

$$\Phi_1: \mathcal{H}_1 \longrightarrow l^2(A)$$
 e $\Phi_2: \mathcal{H}_2 \longrightarrow l^2(A)$

(per il corollario 7.1.4) e componendo l'uno con l'inverso dell'altro otteniamo l'operatore unitario voluto.

QED

²Cioè gli $\{x_n\}$ sono linearmente indipendenti ed il sottospazio vettoriale che generano è denso.

Ad esempio, se $\mathcal{H} = l^2(\mathbb{N})$, e se consideriamo come insieme di indici i numeri naturali pari $2\mathbb{N}$, allora esiste un operatore unitario in $\mathcal{B}(\mathcal{H})$ isometrico su un sottospazio *proprio*:

$$Ue_n := e_{2n}$$

tale che

$$||Ux||^2 = ||x||^2$$

e quindi $(Ux, Ux) = (x, U^*Ux) = (x, x)$ i.e. $U^*U = I$. Tuttavia U non è unitario, dato che non è suriettivo.

Osserviamo inoltre che se $A=\{1,2,3,4,\ldots\}=\mathbb{N}\setminus\{0\}$ allora esiste un operatore

$$S: \mathcal{H} \longrightarrow L^2(A)$$
$$e_n \longmapsto e_{n+1}$$

tale che im $(S)^{\perp} = \mathbb{C}e_0$ e che si dice *shift unilatero*. Si tratta di un operatore isometrico.

7.2 Operatori di proiezione negli spazi di Hilbert

Consideriamo uno spazio di Hilbert \mathcal{H} ed un suo sottospazio vettoriale chiuso M. Per il teorema di Riesz ogni elemento $x \in \mathcal{H}$ si decompone come $x = x_M + x_{M^{\perp}}$. Quindi la mappa

$$x \longmapsto x_M$$

è lineare³ e suriettiva. Denotiamola E_M .

Osserviamo che $E_M^2 = E_M$, cioè che l'operatore $E : \mathcal{H} \longrightarrow \mathcal{H}$ è idempotente: infatti $E_M^2(x) = E_M(x_M) = x_M$. Questo è un fatto del tutto generale che si verifica ogni qual volta uno spazio vettoriale X si decomponga in somma di sottospazi e si considerino le proiezioni di X su questi suoi sottospazi.

Un altro fatto generale che probabilmente è ben noto al lettore è che, viceversa, se X è uno spazio vettoriale e $E: X \longrightarrow X$ un operatore lineare idempotente, X si decompone in somma diretta di due sottospazi, precisamente l'immagine $M = \operatorname{im}(E)$ di E ed il suo conucleo $N = \operatorname{im}(I - E)$ (ove I è l'operatore identità su X).

Nel caso di un sottospazio chiuso M di uno spazio di Hilbert \mathcal{H} la proiezione $E_M: X \longrightarrow X$ è un operatore continuo:

$$||x||^2 = ||x_M||^2 + ||x_{M^{\perp}}||^2$$

 $^{^3}$ Se X è un qualsiasi spazio vettoriale che sia somma diretta di due sottospazi M e N allora la decomposizione di un elemento $x \in X$ come somma di un elemento $x_M \in M$ ed un elemento $x_N \in N$ è unica, e quindi le mappe $x \longmapsto x_M$ e $x \longmapsto x_N$ sono lineari.

da cui segue $||E_M x|| = ||x_M|| \le ||x||$.

Osserviamo esplicitamente che, $E \neq 0$ se e solo se im $(E) \neq (0)$, il che avviene se e solo se esiste un elemento $x_0 \in \mathcal{H}$ non nullo tale che $Ex_0 = x_0$. Dunque ||E|| = 1.

Naturalmente

$$(y, Ex) = (y_M + y_{M^{\perp}}, x_M) = (y_M, x_M) = (Ey, Ex) = (y, E^*Ex)$$

e quindi un proiettore E è autoaggiunto. Dunque

$$E = E^*E \iff \begin{cases} E = E^2 \\ E = E^* \end{cases}$$

sono condizioni equivalenti all'essere E un proiettore su un sottospazio chiuso.

7.2.1 Definizione Una isometria parziale in uno spazio di Hilbert \mathcal{H} è un elemento $W \in \mathcal{B}(\mathcal{H})$ tale che l'operatore

$$W|_{\mathcal{N}(W)^{\perp}}$$

sia una isometria (si ricordi che $\mathcal{N}(A)$ è il nucleo dell'operatore A, i.e. l'insieme $\{x \in \mathcal{H} \mid Ax = 0\}$).

Ad esempio, se M e N sono sottospazi chiusi di $\mathcal H$ della stessa dimensione allora esiste un operatore unitario

$$W_0: M \longrightarrow N$$

che possiamo comporre ad esempio con il proiettore E_M ottenendo

$$W := W_0 E_M$$

che è evidentemente una isometria parziale.

7.2.2 Proposizione Esiste una corrispondenza biunivoca

$$\{M \subset \mathcal{H} \mid M = \overline{M}\} \longleftrightarrow \{E \in \mathcal{B}(\mathcal{H}) \mid E = E^*E\}$$

DIMOSTRAZIONE: Se $E \in \mathcal{B}(\mathcal{H})$ è tale che $E = E^*E$ allora prendiamo $M = \operatorname{im}(E)$ e $N = \operatorname{im}(I - E)$. Ovviamente $\mathcal{H} = M + N$. Inoltre $M \cap N = (0)$, dato che $M = N^{\perp}$: $(Ey, (I - E)x) = (y, (E^* - E^*E)x) = 0$, ed analogamente $N = M^{\perp}$.

QED

Se M_1 e M_2 sono sottospazi chiusi di \mathcal{H} , con proiettori E_1 , E_2 , allora

$$M_1 \subset M_2^{\perp} \iff E_1 E_2 = 0$$

Infatti $0 = (E_x, E_2 y) \iff (x, E_1^* E_2 y) = 0 \iff E_1^* E_2 = 0 \iff E_1 E_2 = 0$ (essendo i proiettori autoaggiunti). Ovviamente $E_1 E_2 = 0 \iff E_2 E_1 = 0$ e $M_1 \subset M_2^{\perp} \iff M_2 \subset M_1^{\perp}$.

Osserviamo che in generale la somma $E_1 + E_2$ non è necessariamente idempotente, ma tuttavia, se $M_1 \perp M_2$:

$$(E_1 + E_2)^2 = E_1^2 + E_1 E_2 + E_2 E_1 + E_2^2 = E_1 + E_2$$

e quindi $E_1 + E_2$ è in questo caso il proiettore di $M_1 + M_2$.

QED

Questi fatti si estendono al caso di n proiettori, così ad esempio, se $M_1, ..., M_n$ sono sottospazi chiusi mutuamente ortogonali, allora $\sum E_i$ è il proiettore dello spazio $\sum M_i$. In particolare la somma di sottospazi chiusi è chiuso.

Ancora più in generale, se $\{M_{\alpha}\}$ è una famiglia qualsiasi di sottospazi vettoriali chiusi di \mathcal{H} mutuamente ortogonali:

$$\forall \alpha \neq \beta \quad M_{\alpha} \perp M_{\beta}$$

allora lo spazio $\sum M_{\alpha}$ può non essere affatto chiuso. Bisogna considerare esplicitamente la sua chiusura in \mathcal{H} .

Ad esempio, si noti che se $\{E_i\}_{i\in\mathbb{N}}$ sono idempotenti autoaggiunti (non nulli!) e tali che

$$\forall i \neq j \quad E_i E_h = 0$$

allora $\sum_{i\in\mathbb{N}} E_i$ non converge in norma. Se così non fosse si avrebbe infatti, per ogni $\varepsilon > 0$ e per $n, m > n_{\varepsilon}$:

$$\left|\left|\sum_{i=1}^{n} E_i\right|\right| < \varepsilon$$

il che è assurdo, visto che l'idempotente autoaggiunto $\sum E_i$ ha norma 1.

Questo esempio mostra come sia necessario considerare topologie alternative sullo spazio degli operatori lineari.

7.2.3 Definizione Se X è uno spazio di Banach e $\{A_n\} \subset \mathcal{B}(X)$ allora si dice che la successione $\{A_n\}$ converge fortemente a A, e si scrive

$$A_n \xrightarrow{f} A$$

se per ogni $x \in X$: $\lim_n A_n x = Ax$.

Osserviamo che se $||A_n - A|| \longrightarrow 0$ allora $\sup_{||x||=1} |A_n x - Ax| \longrightarrow 0$ e quindi (scriviamo $A_n \stackrel{||-||}{\longrightarrow} A$ per la convergenza in norma):

$$A_n \xrightarrow{||-||} A \iff A_n \xrightarrow{f} A$$
 uniformemente sulla palla unitaria in $\mathcal H$

Ricordando la definizione di topologia debole su uno spazio topologico (definizione 2.1.22), diamo la

7.2.4 Definizione La topologia forte sullo spazio $\mathcal{B}(X)$ è la topologia debole definita dalla famiglia di funzioni

$$\{f: \mathcal{B}(X) \longrightarrow X \mid \forall A \in \mathcal{B}(X) \quad f(A) = Ax\}_{x \in X}$$

Per capire meglio la definizione, scriviamo come sono fatti gli intorni di un operatore A nella topologia forte:

$$U_{x_1,...,x_n}(A) = \{ B \in \mathcal{B}(X) \mid \forall k = 1,...,n \mid |(B-A)x_k|| \le 1 \}$$

(l'intorno U dipende da A e da n elementi $x_1, ..., x_n \in X$).

Evidentemente questa topologia non possiede una base numerabile di intorni, e non può dunque caratterizzarsi semplicemente con i limiti di successioni, bensì con i limiti di successioni generalizzate.

Supponiamo quindi di avere una famiglia di proiettori $\{E_{\alpha}\}_{\alpha\in A}$ con $\{M_{\alpha}\}_{\alpha\in A}$ relativi sottospazi e consideriamo l'insieme

$$B := \{ \beta \subset A \mid \operatorname{Card}(\beta) < \infty \}$$

parzialmente ordinato dalla relazione di inclusione \subset . Si tratta di un insieme diretto e quindi possiamo definire la successione generalizzata

$$F_{\beta} := \sum_{\alpha \in \beta} E_{\beta}$$

il cui limite (se esiste) è $\sum_{\alpha \in A} E_{\alpha}$.

7.2.5 Proposizione La serie

$$\sum_{\alpha \in A} E_{\alpha} =: E$$

converge nella topologia forte.

DIMOSTRAZIONE: Dobbiamo dimostrare che per ogni $x \in \mathcal{H}$ esiste un $\beta_0 \in B$ tale che se $\beta_0 \subset \beta$ allora

$$||F_{\beta}x - Ex|| < 1$$

Sia $x \in M$ con

$$M := \overline{\sum_{\alpha \in A} M_{\alpha}}$$

Dato che M è chiuso deve esistere $x' \in \sum_{\alpha \in \beta_0} M_{\alpha}$ arbitrariamente vicino a x (in norma) i.e. $x' = \sum_{\alpha \in A} E_{\alpha} x$. Dunque

$$x - \sum_{\alpha \in \beta} E_{\alpha} x = x - \sum_{\alpha \in \beta} E_{-} Ea(x - x') + \sum_{\alpha \in \beta} E_{\alpha} x' = x - x' + F_{\beta}(x - x')$$

i.e.

$$||x - \sum_{\alpha \in \beta} E_{\alpha}x|| \le ||x - x'|| + ||F_{\beta}(x - x')|| \longrightarrow 0$$

per $||x - x'|| \longrightarrow 0$. Dunque, se $x \in M$ allora $x = \sum_{\alpha \in A} E_{\alpha} x$.

Se ora $x \in \mathcal{H}$ è qualsiasi, $Ex \in M$ e quindi, applicando il ragionamento precedente (tenendo conto che $E_{\alpha}Ex = E_{\alpha}x$, avendosi $M_{\alpha} \subset M$) si trova

$$Ex = \sum_{\alpha \in A} E_{\alpha} Ex = \sum_{\alpha \in A} E_{\alpha} x$$

QED

Osserviamo che, se $\beta \subset A$ (con Card $(\beta) < \infty$), allora

$$\left|\left|\sum_{\alpha\in\beta} E_{\alpha}x\right|\right|^{2} = \sum_{\alpha\in\beta} \left|\left|E_{\alpha}x\right|\right|^{2}$$

Se $x \in \mathcal{H}$, per la proposizione precedente si ha

$$||Ex||^2 = \lim_{\beta} \left| \left| \sum_{\alpha \in \beta} E_{\alpha} x \right| \right|^2 = \sum_{\alpha} ||E_{\alpha} x||^2$$

Allora le seguenti proposizioni sono equivalenti⁴:

- $\overline{\sum_{\alpha \in A} M_{\alpha}} = \mathcal{H}.$
- $\mathcal{H} = M$.
- $\sum_{\alpha} E_{\alpha} = I$ (nella topologia forte).

 $^{^4\}mathrm{Un}$ sottoinsieme è totale se il suo inviluppo lineare, il sottospazio vettoriale che genera, è denso.

- $\bigcup_{\alpha \in A} M_{\alpha}$ è un sottoinsieme totale in \mathcal{H} .
- $(\bigcup_{\alpha \in A} M_{\alpha})^{\perp} = 0$ (S è totale se e solo se $S^{\perp} = 0$).

Non appena una di esse sia verificata allora ha luogo l'isomorfismo di spazi di Hilbert

$$\mathcal{H} \cong \bigoplus_{\alpha \in A} M_{\alpha}$$

realizzato dalla mappa $x \longmapsto \{\alpha \in A \longmapsto \chi(\alpha) = E_{\alpha}x \in M_{\alpha}\}$. Si noti che

$$\sum_{\alpha} ||\chi(\alpha)||^2 = ||x||^2$$

e si osservi che, se ciascuno degli spazi M_{α} è di dimensione 1, allora la teoria che abbiamo svolto è semplicemente quella delle basi ortonormali in \mathcal{H} .

Concludiamo la nostra analisi di $\mathcal{B}(\mathcal{H})$ indagandone alcune particolarità della struttura algebrica. Prima svolgiamo qualche semplice osservazione sui proiettori e sui loro sottospazi associati:

7.2.6 Proposizione $(x, Ex) = (x, x) \iff x \in M$.

DIMOSTRAZIONE: Basta osservare che

$$(Ex, Ex) = (x, Ex) = (x, x) = (Ex, Ex) + ((I - E)x, (I - E)x)$$

e che $(I - E)x = 0 \iff x = Ex$.

 $_{
m QED}$

Se M e N sono sottospazi chiusi, allora

$$M \subset N \iff E_M E_N = E_M$$

Ma EF è autoaggiunto se e solo se EF = FE i.e. $E_M E_N = E_M \iff E_N E_M = E_M$:

$$M \subset N \Rightarrow E_M E_N = E_N E_M$$

Inoltre

$$M \perp M \Rightarrow E_M E_N = E_N E_M$$

Se poi $M=M_1+M_2$ allora $E_1+E_2=E_M:=E$ e dunque, se $F:=E_N$, EF=FE.

In $\mathcal{B}(\mathcal{H})$ c'è una relazione di ordine parziale che possiamo determinare stabilendo quali sono gli elementi positivi:

$$\mathcal{B}(\mathcal{H})_{+} := \{ B \in \mathcal{B}(\mathcal{H}) \mid \forall x \in \mathcal{H} \quad (x, Bx) \ge 0 \}$$

Evidentemente, per l'identità di polarizzazione:

$$B \in \mathcal{B}(\mathcal{H})_+ \Rightarrow B = B^*$$

Ad esempio per ogni $A \in \mathcal{B}(\mathcal{H})$ l'operatore AA^* è semi-definito positivo: $AA^* \geq 0$. In particolare, un autoaggiunto idempotente E è positivo. **7.2.7 Proposizione** $M \subset N \iff E_M E_N = EM \iff E_M \leq E_N$.

DIMOSTRAZIONE: Dato che $N=M+(M^{\perp}\cap N)$ si ha $E_N=E_M+E_{M^{\perp}\cap N}$ e quindi:

$$(x, E_N x) = (x, E_M x) + (x, E_{M^{\perp} \cap N} x)$$

quindi, dato che il secondo addendo del secondo membro è ≥ 0 , troviamo $(x, E_N x) \geq (x, E_M x)$.

Viceversa, $x \in M \iff (x, E_M x) = (x, x)$. Ma se $E_M \leq E_N$ allora

$$(x,x) = (x, E_M x) \le (x, E_N x) = (E_N x, E_N x) \le ||x||^2 = (x,x)$$

(dato che E_N è un proiettore). Quindi, per la proposizione precedente:

$$M \subset N$$

QED

- **7.2.8 Teorema** Se E e F sono idempotenti autoaggiunti in $\mathcal{B}(\mathcal{H})$ (e quindi esistono i sottospazi chiusi M e N in modo che E = E_M e F = E_N) allora le seguenti proposizioni sono equivalenti:
 - EF = FE.
 - $EF = E_{M \cap N}$.
 - $N = (N \cap N) + (N \cap M^{\perp}).$

DIMOSTRAZIONE: $(3) \Rightarrow (1)$ è già stato dimostrato.

 $(1)\Rightarrow (2)$: $EF=FE\Rightarrow EF=(EF)^*$ e $\Rightarrow (EF)^2=E^2F^2=EF$. Quindi EF è un proiettore se EF=FE.

Ma, se $x \in M \cap N$ allora Ex = x = Fx e quindi EFx = x, cioè $M \cap N \subset \operatorname{im}(EF)$. Inoltre, se $x \in \operatorname{im}(EF)$ allora x = EFx e $Ex = E(EF)x = E^2Fx = x$. Scambiando il ruolo di $E \in F$ si ottiene anche Fx = x e quindi $M \cap N = \operatorname{im}(EF)$.

- $(2) \Rightarrow (1)$ è banale.
- $(2) \Rightarrow (3)$: Se $EF = E_{M \cap N}$ allora:

$$F = (F - EF) + EF = F(I - E) + EF$$

Ma vale (1) (perché vale (2)) e quindi F e I - E commutano:

$$F(I-E) = E_{N\cap M^{\perp}}$$

e $EF = E_{N \cap M}$, sicché

$$F = E_{N \cap M^{\perp}} + E_{N \cap M} \Rightarrow N = M^{\perp} \cap N + M \cap N$$

QED

Possiamo formulare quanto fin qui ottenuto dicendo che il reticolo dei sottospazi chiusi (o equivalentemente degli idempotenti autoaggiunti) di uno spazio di Hilbert è un'algebra di Boole.

7.3 Serie di Fourier

Corrediamo ora la teoria con gli esempi fondamentali: le serie e l'integrale di Fourier 5 .

Vogliamo considerare funzioni $f: \mathbb{R} \longrightarrow \mathbb{C}$ periodiche, di periodo 2π (come le classiche funzioni trigonometriche): $f(t) = f(t+2\pi)$; il modo più naturale di procedere non è considerare queste funzioni definite sulla retta reale ma sulla circonferenza $\mathbb{T} = \{|z| = 1\} \subset \mathbb{C}$. Osserviamo che \mathbb{T} è lo spazio topologico (compatto) ottenuto dall'intervallo $[0, 2\pi]$ identificandone gli estremi $0 \approx 2\pi$, ovvero è il quoziente $\mathbb{R}/2\pi\mathbb{Z}$ (via la mappa $t \longmapsto e^{it}$).

Consideriamo dunque lo spazio T, con la misura di Lebesgue: ricordiamo che la misura di Lebesgue è invariante per traslazioni:

$$\int_{\mathbb{T}} f(t-s)dt = \int_{\mathbb{T}} f(t)dt$$

per ogni $0 \le s < 2\pi$ (integrare su \mathbb{T} è come integrare sull'intervallo $(0, 2\pi)$). Consideriamo lo spazio $L^1(\mathbb{T})$ con la norma di Banach

$$||f||_1 = \frac{1}{2\pi} \int_{\mathbb{T}} |f(t)| dt$$

(supponiamo che le funzioni abbiano valori complessi).

Ad esempio sia

$$p(t) = \sum_{n=-N}^{N} a_n e^{int}$$

(una tale funzione si dice polinomio trigonometrico). I coefficienti a_n del polinomio sono tutto ciò che dobbiamo conoscere per determinarlo completamente; inoltre si possono ricavare dal polinomio stesso, per mezzo della formula

$$a_n = \frac{1}{2\pi} \int_{\mathbb{T}} p(t)e^{-int}dt$$

Questa formula segue direttamente dalle relazioni di ortogonalità

$$\frac{1}{2\pi} \int_{\mathbb{T}} e^{int} dt = \delta_{n0}$$

 $^{^5{\}rm Si}$ tratta degli esempi che storicamente hanno dato impulso sia alla teoria della misura di Lebesgue che alla teoria degli spazi di Hilbert.

7.3.1 Definizione Una serie trigonometrica è una espressione formale

$$S = \sum_{n = -\infty}^{\infty} a_n e^{int}$$

 $con \ a_n \in \mathbb{C}$.

Notiamo che si tratta di una serie formale, nel senso che può benissimo non convergere; tuttavia, motivati dall'esempio dei polinomi trigonometrici, ci chiediamo se una tale serie non possa rappresentare una funzione.

Sia $f \in L^1(\mathbb{T})$ e definiamo l'n-simo coefficiente di Fourier di f come

$$\widehat{f}(n) := \frac{1}{2\pi} \int_{\mathbb{T}} f(t)e^{-int}dt$$

Se f è un polinomio otteniamo esattamente il suo coefficiente in grado n; in generale abbiamo non un polinomio ma una serie trigonometrica

$$S_f := \sum_{n = -\infty}^{\infty} \widehat{f}(n)e^{int}$$

che si dice serie di Fourier associata alla funzione f. Si verificano immediatamente le seguenti proprietà:

7.3.2 Proposizione Siano $f, g \in L^1(\mathbb{T})$;

- $\widehat{f+g}(n) = \widehat{f}(n) + \widehat{g}(n)$.
- $\forall z \in \mathbb{C} \ \widehat{zf}(n) = z\widehat{f}(n)$.
- Se la traslata di $t \in \mathbb{T}$ della funzione f è la funzione

$$f_t(s) := f(s-t)$$

allora $\widehat{f}_t(n) = \widehat{f}(n)e^{-int}$.

 $|\widehat{f}(n)| \le ||f||_1$

Forse solo la (4) merita un commento:

$$|\widehat{f}(n)| = \frac{1}{2\pi} \left| \int_{\mathbb{T}} f(t)e^{-int}dt \right| \le \frac{1}{2\pi} \int_{\mathbb{T}} |f(t)|dt = ||f||_1$$

(ricordiamo che e^{it} è un numero complesso di modulo 1, se $t \in \mathbb{R}$). Evidentemente, se $\{f_n\}$ è una successione convergente in $L^1(\mathbb{T})$ allora $\widehat{f_n}$ converge uniformemente.

Definiamo ora una operazione sullo spazio $L^1(\mathbb{T})$ che riflette il fatto che \mathbb{T} è un gruppo rispetto alla somma (modulo 2π).

7.3.3 Lemma Se $f, g \in L^1(\mathbb{T})$ allora, per quasi ogni $s \in \mathbb{T}$, la funzione $t \longmapsto f(t)g(s-t)$ è integrabile.

DIMOSTRAZIONE: La funzione di due variabili $(s,t) \longmapsto f(t)g(s-t)$ è misurabile (è prodotto di funzioni misurabili!) e quindi, per quasi ogni t, la funzione $s \longmapsto f(t)g(s-t)$ è multiplo costante di g_t e quindi è integrabile e

$$\frac{1}{2\pi} \int_{\mathbb{T}} \frac{1}{2\pi} \int_{\mathbb{T}} |f(t)g(s-t)| ds dt = \frac{1}{2\pi} \int_{\mathbb{T}} |f(t)| ||g||_1 dt = ||f||_1 ||g||_1$$

Quindi f(t)g(s-t) è integrabile (per il teorema di Fubini) come funzione di t, per quasi ogni s.

QEI

Abbiamo quindi, per ogni $f,g\in L^1(\mathbb{T})$ la loro convoluzione $f*g\in L^1(\mathbb{T})$ definita come

$$f * g(s) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t)g(s-t)dt$$

Ovviamente

$$||f * g||_1 \le ||f||_1 ||g||_1$$

dato che

$$\frac{1}{2\pi} \int |f * g(s)| ds = \frac{1}{2\pi} \int \frac{1}{2\pi} \int |f(t)g(s-t)| dt ds$$

$$\leq \frac{1}{4\pi^2} \iint |f(t)g(s-t)| dt \otimes ds = ||f||_1 ||g||_1$$

7.3.4 Proposizione $\widehat{f*g}(n) = \widehat{f}(n)\widehat{g}(n)$

DIMOSTRAZIONE: Si tratta di un semplice cambiamento di variabile nell'integrale combinato col teorema di Fubini:

$$\widehat{f * g}(n) = \frac{1}{2\pi} \int f * g(s)e^{-ins}ds = \frac{1}{4\pi^2} \iint f(t)e^{-int}g(s-t)e^{-in(s-t)}dsdt$$
$$= \frac{1}{2\pi} \int f(t)e^{-int}dt \frac{1}{2\pi} \int g(s)e^{-ins}ds = \widehat{f}(n)\widehat{g}(n)$$

QED

A questo punto, usando calcoli analoghi a quelli fin qui svolti, è un facile esercizio dimostrare la

7.3.5 Proposizione Rispetto alla convoluzione, lo spazio $L^1(\mathbb{T})$ diviene un'algebra associativa e commutativa.

7.3.6 Esempio Calcoliamo la convoluzione di una funzione $f \in L^1(G)$ con un polinomio trigonometrico p:

$$f * p(t) = \frac{1}{2\pi} \int f(s) \sum_{n=-N}^{N} a_n e^{i(t-s)n} ds = \sum_{n=-N}^{N} a_n e^{int} \frac{1}{2\pi} \int f(s) e^{-ins} ds$$
$$= \sum_{n=-N}^{N} a_n \widehat{f}(n) e^{int}$$

Consideriamo ora una successione di funzioni in $L^1(\mathbb{T})$ (si tratta di polinomi trigonometrici) nota come nucleo di sommabilità di Fejér:

(†)
$$K_N(t) := \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1}\right) e^{int}$$

7.3.7 Proposizione Il nucleo di Fejér soddisfa alle proprietà seguenti:

• Per ogni $N \in \mathbb{N}$:

$$\frac{1}{2\pi} \int K_N(t)dt = 1$$

• Esiste una costante c tale che

$$\frac{1}{2\pi} \int |K_N(t)| dt \le c$$

• $Se \ 0 < \delta < \pi$:

$$\lim_{N \to \infty} \int_{\delta}^{2\pi - \delta} |K_N(t)| dt = 0$$

• $K_N(t) \geq 0$.

DIMOSTRAZIONE: La (2) e la (4) sono ovvie, dato che $|e^{int}|=1$. La (1) segue dal fatto che $\int e^{int}=\delta_{n0}$:

$$\frac{1}{2\pi} \int K_M(t)dt = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{1+N} \right) \frac{1}{2\pi} \int e^{int} = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{1+N} \right) \delta_{n0} = 1$$

La (3) segue dalla formula

$$K_N(t) = \frac{1}{1+N} \left(\frac{\sin \frac{N+1}{2}t}{\sin \frac{t}{2}} \right)^2$$

che si dimostra osservando che

$$\left(-\frac{1}{4}e^{-it} + \frac{1}{2} - \frac{1}{4}e^{it}\right) \sum_{n=-N}^{N} \left(1 - \frac{|n|}{1+N}\right) e^{int} =$$

$$= \frac{1}{1+N} \left(-\frac{1}{4}e^{-i(N+1)t} + \frac{1}{2} - \frac{1}{4}e^{i(N+1)t}\right)$$

ed utilizzando l'identità trigonometrica

$$\sin^2 \frac{t}{2} = \frac{1 - \cos^2 t}{2} = -\frac{1}{4}e^{-it} + \frac{1}{2} - \frac{1}{4}e^{it}$$

QED

Una successione di funzioni che verifichi queste proprietà si dice nucleo (positivo) di sommabilità. Notiamo che, per la (†):

$$f * K_N(t) = \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N+1} \right) \widehat{f}(n) e^{int}$$

Il nucleo di Fejér è di fondamentale utilità: ad esempio possiamo dimostrare per mezzo di ${\rm esso}^6$ il

7.3.8 Teorema di Approssimazione (WEIERSTRASS) Ogni funzione $f \in C(\mathbb{T})$ è limite uniforme di polinomi trigonometrici.

DIMOSTRAZIONE: Osserviamo che una funzione continua è in $L^1(\mathbb{T})$ e che

$$||f||_1 \le ||f||_0$$

ove $||.||_0$ è la norma dello spazio di Banach $C(\mathbb{T})$:

$$||f||_0 = \max_{t \in \mathbb{T}} |f(t)|$$

Infatti

$$||f||_1 = \frac{1}{2\pi} \int |f(t)| dt \le \frac{1}{2\pi} \int ||f||_0 dt = \frac{1}{2\pi} \frac{||f||_0}{2\pi} = ||f||_0$$

⁶Questo teorema seguirà immediatamente da un risultato generale, il teorema di Stone–Weierstrass 9.2.9, che daremo in seguito: ci sembra interessante darne comunque una dimostrazione particolare in questa sede.

Quindi la convergenza in L^1 implica la convergenza uniforme; ora se $f \in C(\mathbb{T}) \subset L^1(\mathbb{T})$ dimostriamo che si può approssimare con i polinomi trigonometrici $f * K_N$. Dobbiamo dimostrare che $||f - f * K_N||_1 \longrightarrow 0$, il che faremo in due passi: prima dimostreremo che, se $k \in C(\mathbb{T})$ e $f \in L^1(\mathbb{T})$ allora

$$\frac{1}{2\pi} \int k(t) f_t dt = f * k$$

e poi dimostreremo che

$$f = \lim_{N \to \infty} \frac{1}{2\pi} \int K_N(t) f_t dt$$

(limite nella norma ||.||1). Da (*) e (**) segue la tesi.

Dimostriamo (*): se $f \in C(\mathbb{T})$ scriviamo l'integrale alla Riemann:

$$\frac{1}{2\pi} \int k(t) f_t dt = \frac{1}{2\pi} \lim_{n} \sum_{n} (t_{n+1} - t_n) k(t_n) f_{t_n}$$

per una partizione $\{t_n\}$ di $[0, 2\pi)$: ma

$$\frac{1}{2\pi} \lim \sum_{n} (t_{n+1} - t_n) k(t_n) f(t - t_n) = f * k(t)$$

(limite nella norma uniforme) sempre per definizione di integrale di Riemann: quindi per funzioni continue il teorema è dimostrato. Ma le funzioni continue approssimano le funzioni $L^1(\mathbb{T})$, e, se $f \in L^1(\mathbb{T})$ e $g \in C(\mathbb{T})$ è tale che $||f - g|| \leq \varepsilon$ allora, dato che la (*) vale per le funzioni continue:

$$\frac{1}{2\pi} \int k(t) f_t t - f * k = \frac{1}{2\pi} \int k(t) (f - g)_t dt - (f - g) * k$$

da cui

$$\left| \left| \frac{1}{2\pi} \int k(t) f_t dt - f * k \right| \right|_1 \le 2\varepsilon ||k||_1$$

Questo dimostra la (*); passiamo alla (**): ricordiamo che f è continua su un compatto (\mathbb{T}), quindi uniformemente continua. Cioè, per ogni $\varepsilon > 0$ esiste δ_{ε} tale che se $|s-t| < \delta_{\varepsilon}$ allora $|f(s) - f(t)| < \varepsilon$. Allora, ricordando le proprietà del

nucleo di Fejér (proposizione 7.3.7), se $0 < \delta < \pi$:

$$\begin{split} |f*K_N(s)-f(s)| &= \left|\frac{1}{2\pi}\int K_n(t)f(t-s)dt - \frac{1}{2\pi}\int f(s)K_N(t)dt\right| \\ &\leq \frac{1}{2\pi}\int |f(t-s)-f(s)|K_N(t)dt \\ &= \frac{1}{2\pi}\left(\int_0^\delta |f(t-s)-f(s)|K_N(t)dt + \\ &+ \int_\delta^{2\pi-\delta} |f(t-s)-f(s)|K_N(t)dt + \\ &+ \int_{2\pi-\delta}^{2\pi} |f(t-s)-f(s)|K_N(t)dt\right) \\ &< \frac{1}{2\pi}\left(\int_0^\delta \varepsilon K_N(t)dt + \int_\delta^{2\pi-\delta} |f(t-s)-f(s)|K_N(t)dt + \\ &+ \int_{2\pi-\delta}^{2\pi} \varepsilon K_N(t)dt\right) \\ &< \frac{1}{2\pi}\left(2\delta\varepsilon c + \int_\delta^{2\pi-\delta} M_s K_N(t)dt\right) \\ &< C\varepsilon \end{split}$$

(ove
$$M_s = \max_{t \in \mathbb{T}} |f(t-s) - f(s)| \in \int |K_N(t)| \le c$$
).

QED

Osserviamo che l'algebra $L^1(\mathbb{T})$ non ha elemento neutro, ma che il nucleo di Fejér può essere considerato una "identità approssimante".

I coefficienti di Fourier $\widehat{f}(n)$ di una funzione $f \in L^1(\mathbb{T})$ soddisfano un "teorema di unicità":

7.3.9 Teorema Se
$$f \in L^1(\mathbb{T})$$
 e per ogni $n \in \mathbb{N}$ $\widehat{f}(n) = 0$ allora $f = 0$.

DIMOSTRAZIONE: Dato che si tratta di un polinomio trigonometrico, i coefficienti di $f*K_N = 0$ sono tutti nulli essendo multipli dei $\widehat{f}(n)$) e, dato che $f*K_N \longrightarrow f$, ne segue f = 0.

QED

In altri termini, se due funzioni hanno eguali coefficienti di Fourier, debbono coincidere: la serie di Fourier determina univocamente la funzione stessa. Inoltre la successione $\{\hat{f}(n)\}$ è infinitesima:

7.3.10 Lemma (RIEMANN-LEBESGUE) Se $f \in L^1(\mathbb{T})$ allora

$$\lim_{|n| \to \infty} \widehat{f}(n) = 0$$

DIMOSTRAZIONE: Se p è un polinomio trigonometrico che approssima $f \in L^1(\mathbb{T})$ per meno di ε :

$$||f - p||_1 < \varepsilon$$

e se |n| è maggiore del grado di p, allora

$$|\widehat{f}(n)| = |\widehat{f-p}(n)| \le ||f-p||_1 < \varepsilon$$

QED

Osserviamo che la serie di Fourier non converge necessariamente: possiamo, usando il teorema di Banach–Steinhaus, dare un esempio di funzione la cui serie di Fourier è non convergente in un punto di \mathbb{T} : ricordiamo che la serie

$$S_f = \sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{itn}$$

converge se converge (in norma $||.||_1$) la successione delle sue ridotte N-sime

$$S_N(f) = \sum_{n=-N}^{N} \widehat{f}(n)e^{itn}$$

Evidentemente la mappa $S_N: C(\mathbb{T}) \longrightarrow \mathbb{R}$

$$f \longmapsto S_N(f)(0) = \sum_{n=-N}^{N} \widehat{f}(n)$$

è un funzionale lineare continuo sullo spazio di Banach $C(\mathbb{T})$; come esercizio si può dimostrare che la successione di funzionali lineari $\{S_N\}$ non è uniformemente limitata e quindi, per il teorema di Banach–Steinhaus, esiste $f \in C(\mathbb{T})$ tale che $\{S_N(f)(0)\}$ non è limitata e quindi la serie di Fourier diverge in 0.

Ora consideriamo lo spazio di Hilbert $L^2(\mathbb{T})$: osserviamo che la famiglia di funzioni $\{e^{int}\}$ in $L^2(\mathbb{T})$ forma un sistema ortonormale completo: è completo per il teorema di unicità delle serie di Fourier, dato che

$$(f, e^{int}) = \frac{1}{2\pi} \int f(t) \overline{e^{int}} dt = \widehat{f}(n)$$

ed è ortonormale in virtù delle identità

$$\frac{1}{2\pi} \int e^{int} \overline{e^{imt}} dt = \delta_{nm}$$

Da quello che sappiamo sulle basi ortonormali negli spazi di Hilbert segue il

7.3.11 Teorema Se $f \in L^2(\mathbb{T})$ allora

•
$$\sum_{n} |\widehat{f}(n)|^2 = \frac{1}{2\pi} \int |f(t)|^2 dt$$

- $||f S_N(f)||_1 \longrightarrow 0$
- Se $\{a_n\}_{n\in\mathbb{Z}}$ è una successione in $l^2(\mathbb{Z})$ (i.e. $\sum |a_n|^2 < \infty$) allora esiste un'unica $f \in L^2(\mathbb{T})$ tale che $a_n = \widehat{f}(n)$.
- Se $g \in L^2(\mathbb{T})$:

$$(f,g) = \frac{1}{2\pi} \int f(t)\overline{g(t)}dt = \sum_{n=-\infty}^{\infty} \widehat{f}(n)\overline{\widehat{g}(n)}$$

In altri termini, l'operatore

$$U: L^2(\mathbb{T}) \longrightarrow l^2(\mathbb{Z})$$

che ad una funzione f fa corrispondere la successione dei suoi coefficienti di Fourier (si noti che $U(f) \in l^2(\mathbb{Z})$ per l'identità di Parceval) è unitario.

Osserviamo inoltre che l'operatore di shift $Se_n := e_{n+1}$ è unitario su $l^2(\mathbb{Z})$ e che

$$(U^{-1}SU(f))(z) = zf(z)$$

7.4 Integrale di Fourier

Ora consideriamo le funzioni integrabili su $L^1(\mathbb{R})$; di nuovo la misura di Lebesgue è invariante per traslazioni

$$\int_{-\infty}^{\infty} f(t-s)dt = \int_{-\infty}^{\infty} f(t)dt$$

per ogni $s \in \mathbb{R}$.

Consideriamo sullo spazio $L^1(\mathbb{T})$ la norma di Banach

$$||f||_1 = \int_{\mathbb{R}} |f(t)|dt$$

(supponiamo che le funzioni abbiano valori complessi).

Osserviamo che, a differenza di $L^1(\mathbb{T})$, $L^1(\mathbb{R})$ non contiene tutte le funzioni che ha interesse considerare: ad esempio non contiene le funzioni $L^p(\mathbb{R})$ (dato

che la misura è infinita). In particolare non abbiamo qualcosa come i polinomi trigonometrici in \mathbb{R} : tuttavia, se poniamo

$$\varphi(t) = 2\pi \sum_{n=-\infty}^{\infty} f(t + 2\pi n)$$

otteniamo una funzione $\varphi \in L^1(\mathbb{T})$:

$$||\varphi||_1 \le ||f||_1$$

e quindi possiamo calcolarne i coefficienti di Fourier:

$$\widehat{\varphi}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} \varphi(t) e^{-int} dt = \sum_{m=-\infty}^{\infty} \int_{\mathbb{T}} f(t+2\pi m) e^{-int} dt = \int_{\mathbb{R}} f(x) e^{inx} dx$$

(infatti $\mathbb{R} = \bigcup_{m=-\infty}^{\infty} [m, m+2\pi)$). Osserviamo che in questa formula, n "agisce" su x per moltiplicazione: possiamo allora definire, per ogni $\xi \in \mathbb{R}^*$ (ovviamente $\mathbb{R} \cong \mathbb{R}^*$ non appena si fissi un numero reale non nullo), la trasformata di Fourier di $f \in L^1(\mathbb{R})$:

$$\widehat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{i\xi(x)}dx$$

Quindi $\widehat{\varphi}$ è semplicemente la restrizione agli interi di \widehat{f} . Analizziamo meglio il legame che esiste fra trasformata di Fourier e coefficienti di Fourier: se $\varphi \in L^1(\mathbb{T})$ associata a f è definita come sopra, consideriamo la

$$\varphi_y(t) = 2\pi \sum_{n=-\infty}^{\infty} y f(ty + 2\pi y)$$

Allora, per definizione:

$$\widehat{\varphi_y}(n) = \widehat{f}\left(\frac{n}{y}\right)$$

Supponendo che la serie di Fourier di φ_y converga a $\varphi_y(0)$ in 0 abbiamo che

$$\varphi_y(0) = \sum_{n=-\infty}^{\infty} \widehat{\varphi_y}(n)$$

e quindi la formula di Poisson

$$2\pi y \sum_{n=-\infty}^{\infty} f(2\pi ny) = \sum_{-\infty}^{\infty} \widehat{f}\left(\frac{n}{y}\right)$$

Come nel caso delle serie di Fourier valgono le seguenti proprietà della trasformata di Fourier:

7.4.1 Proposizione Siano $f, g \in L^1(\mathbb{R})$;

•
$$\widehat{f+g}(\xi) = \widehat{f}(\xi) + \widehat{g}(\xi)$$
.

•
$$\forall z \in \mathbb{C}$$
 $\widehat{zf}(\xi) = z\widehat{f}(\xi)$.

• Se la traslata di $x \in \mathbb{R}$ della funzione f è la funzione $f_x(y) := f(y - x)$ allora

$$\widehat{f}_x(\xi) = \widehat{f}(\xi)e^{-i\xi(x)}$$

 $\bullet |\widehat{f}(\xi)| \le ||f||_1$

Se $f \in L^1(\mathbb{R})$ allora \widehat{f} è uniformemente continua: infatti

$$|\widehat{f}(\xi+\eta) - \widehat{f}(\xi)| = \left| \int f(x) (e^{-i(\xi+\eta)(x)} - e^{-i\xi(x)}) dx \right|$$

$$\leq \int |f(x)| |e^{-i\xi(x)}| |e^{-i\eta(x)}| dx$$

e $|e^{-i\xi(x)}|=1$, sicché l'integrando $|f(x)||e^{-i\eta(x)}|$ tende a zero per $\eta\longrightarrow 0$ (|f(x)| è limitato).

Definiamo ora una convoluzione sullo spazio $L^1(\mathbb{R})$. Esattamente come nel caso di $L^1(\mathbb{T})$ si dimostra il seguente

7.4.2 Lemma Se $f, g \in L^1(\mathbb{R})$ allora, per quasi ogni $y \in \mathbb{R}$, la funzione $x \longmapsto f(x)g(y-x)$ è integrabile.

Possiamo quindi, per ogni $f,g \in L^1(\mathbb{R})$ definire la loro convoluzione $f*g \in L^1(\mathbb{R})$ come

$$f * g(y) = \int_{\mathbb{R}} f(x)g(y - x)dx$$

Come nel caso delle serie di Fourier:

$$||f * g||_1 \le ||f||_1 ||g||_1$$

7.4.3 Proposizione Rispetto alla convoluzione, lo spazio $L^1(\mathbb{R})$ diviene un'algebra associativa commutativa, ed inoltre

$$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$

7.4.4 Esempio Calcoliamo la convoluzione di una funzione $f \in L^1(\mathbb{R})$ con una funzione $g \in L^1(\mathbb{R})$ della forma:

$$g(x) = \frac{1}{2\pi} \int_{\mathbb{R}^*} h(\xi) e^{i\xi(x)} d\xi$$

(queste funzioni sono l'analogo dei polinomi trigonometrici⁷) ove $h \in L^1(\mathbb{R}^*)$. Si ha che

$$f * g(x) = \int f(y)g(x - y)dy = \frac{1}{2\pi} \int f(y) \int h(\xi)e^{i\xi(x - y)}d\xi dy$$
$$= \frac{1}{2\pi} \int h(\xi)e^{i\xi(x)} \int f(y)e^{-i\xi(y)}dy d\xi$$
$$= \frac{1}{2\pi} \int h(\xi)\widehat{f}(\xi)e^{i\xi(x)}d\xi$$

Quindi, se $\widehat{f} \in L^1(\mathbb{R}^*)$ otteniamo la formula di inversione di Fourier:

$$f(x) = \frac{1}{2\pi} \int \widehat{f}(\xi) e^{i\xi(x)} d\xi$$

(il secondo membro di questa espressione si dice antitrasformata di Fourier).

Vogliamo ora costruire l'analogo del nucleo di Fejér nel contesto della trasformata di Fourier: consideriamo la funzione

$$K(x) = \frac{1}{2\pi} \left(\frac{\sin \frac{x}{2}}{\frac{x}{2}} \right) = \frac{1}{2\pi} \int_{-1}^{1} (1 - |\xi|) e^{i\xi(x)} d\xi$$

La famiglia di funzioni

$$K_y(x) = yK(xy)$$

 $(y \in \mathbb{R})$ si dice nucleo di Fejér.

7.4.5 Proposizione Il nucleo di Fejér soddisfa alle proprietà seguenti:

$$\frac{1}{2\pi} \int K_y(x) dx = 1$$

⁷Osserviamo che \mathbb{R}^* gioca il ruolo che \mathbb{Z} ha nelle serie di Fourier: le variabili continue ξ sostituiscono quelle discrete n, gli integrali su \mathbb{R}^* sostituiscono le somme su \mathbb{Z} e così via. Esistono comunque polinomi trigonometrici anche nel caso delle funzioni reali: vengono considerati nell'approssimazione delle funzioni quasi-periodiche, importanti ad esempio in Meccanica Celeste.

• $Per y \longrightarrow \infty$:

$$||K_y||_1 = O(1)$$

• Per ogni $\delta > 0$:

$$\lim_{y \to \infty} \int_{|x| > \delta} |K_y(x)| dx = 0$$

DIMOSTRAZIONE: Calcoliamo la norma $||.||_1$ di K(x), usando la nostra conoscenza del nucleo di Fejér per le serie trigonometriche: sappiamo che

$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{1}{N+1} \left(\frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}} \right)^2 dx = 1$$

Dato che $\int K_y(x)dx = \int yK(yx)dx = \int K(yx)d(yx) = \int K(x)dx$ possiamo prendere y = N + 1, ottenendo

$$K_y(x) = \frac{1}{2\pi(N+1)} \left(\frac{\sin\frac{(n+1)x}{2}}{\frac{x}{2}} \right)^2$$

e quindi

$$\left(\frac{\sin \delta}{\delta}\right)^2 \frac{1}{2\pi} \int_{-\delta}^{\delta} \frac{1}{N+1} \left(\frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}\right)^2 dx < \int_{-\delta}^{\delta} K_y(x) dx$$
$$< \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{N+1} \left(\frac{\sin \frac{(n+1)x}{2}}{\sin \frac{x}{2}}\right)^2 dx$$

Per $\delta \longrightarrow 0$ il numero $\int K(x) = \lim_{y \longrightarrow \infty} \int_{-\delta}^{\delta} K_y(x) dx$ è compreso fra $\sin^2 \delta / \delta^2$ e 1. Quindi, per arbitrarietà di δ , $\int K(x) dx = 1$.

Questo calcolo implica le (1)–(3).

QED

A questo punto, come nel caso delle serie di Fourier, si trova che

$$\lim_{y \to \infty} ||f * K_y(x) - f||_1 = 0$$

e si dimostra il

7.4.6 Teorema Se $f \in L^1(\mathbb{R})$ allora

$$f = \lim_{y \to 0} \frac{1}{2\pi} \int_{-y}^{y} \left(1 - \frac{|\xi|}{y} \right) \widehat{f}(\xi) e^{i\xi(x)} d\xi$$

(in norma $||.||_1$).

da cui si deduce un "teorema di unicità":

7.4.7 Teorema Se $f \in L^1(\mathbb{R})$ e per ogni $\xi \in \mathbb{R}^*$ $\widehat{f}(\xi) = 0$ allora f = 0. In altri termini, se due funzioni hanno eguali trasformate di Fourier, debbono coincidere: la trasformata di Fourier determina univocamente la funzione stessa. Inoltre la funzione \widehat{f} è nulla all'infinito:

Vogliamo ora un analogo del teorema di approssimazione di Weierstrass:

7.4.8 Teorema Le funzioni la cui trasformata di Fourier ha supporto compatto sono un sottospazio denso in $L^1(\mathbb{R})$.

DIMOSTRAZIONE: Ogni funzione $f \in L^1(\mathbb{R})$ si approssima con una famiglia $\{f * K_y\}$ di funzioni: dimostriamo che gli elementi di questa famiglia hanno trasformata di Fourier a supporto compatto.

Per la formula di inversione di Fourier applicata al nucleo di Fejér:

$$\widehat{K}_y(\xi) = \max\left(1 - \frac{|\xi|}{y}, 0\right)$$

e, dato che $\widehat{f * g} = \widehat{f}\widehat{g}$:

$$\widehat{f * K_y}(\xi) = \begin{cases} \left(1 - \frac{|\xi|}{y}\right) \widehat{f}(\xi) & \text{se } |\xi| \le y \\ 0 & \text{se } |\xi| > y \end{cases}$$

Quindi queste trasformate di Fourier hanno supporto compatto.

QED

Possiamo ora dedurre il

7.4.9 Lemma (RIEMANN-LEBESGUE) Se $f \in L^1(\mathbb{R})$ allora

$$\lim_{|\xi| \to \infty} \widehat{f}(\xi) = 0$$

DIMOSTRAZIONE: Se g ha trasformata di Fourier a supporto compatto e approssima $f \in L^1(\mathbb{T})$ per meno di ε :

$$||f - g||_1 < \varepsilon$$

allora

$$|\widehat{f}(\xi) - \widehat{g}(\xi)| = |\widehat{f - g}(\xi)| \le ||f - g||_1 < \varepsilon$$

Ma $|\widehat{g}(\xi)| \longrightarrow 0$ per $|\xi| \longrightarrow \infty$ avendo supporto compatto, quindi anche \widehat{f} è nulla all'infinito.

QED

Sia $A(\mathbb{R}^*)$ lo spazio delle funzioni che sono trasformate di Fourier di funzioni $L^1(\mathbb{R})$.

7.4.10 Teorema $A(\mathbb{R}^*)$ è un'algebra (rispetto alla moltiplicazione $FG(\xi) = F(\xi)G(\xi)$) di funzioni continue nulle all'infinito.

Ora consideriamo lo spazio di Hilbert $L^2(\mathbb{R})$: cerchiamo un sistema ortonormale in $L^2(\mathbb{R})$, in analogia a quanto fatto nel caso di \mathbb{T} ; sia $f:\mathbb{R} \longrightarrow \mathbb{C}$ una funzione misurabile tale che

$$|f(x)| \le ce^{-a|x|}$$

ove C e a sono costanti positive. Ad esempio, la funzione di Gauss

$$G(x) = e^{-\frac{x^2}{2}}$$

verifica questa ipotesi.

7.4.11 Lemma Se f e xf sono in $L^1(\mathbb{R})$ allora \widehat{f} è derivabile e

$$\widehat{f}' = \widehat{-ixf}$$

DIMOSTRAZIONE: Basta derivare \hat{f} :

$$\widehat{f}'(\xi) = \frac{d}{dx} \int f(x)e^{-i\xi(x)} dx = -i \int x f(x)e^{-i\xi(x)} dx$$

QED

In generale, se $f, xf, x^2f, ..., x^nf \in L^1(\mathbb{R})$ allora \widehat{f} sarà derivabile n volte:

$$\widehat{f}^{(n)} = \widehat{(-ix)^n} f$$

7.4.12 Teorema Le funzioni

$$f(x), xf(x), x^2f(x), ..., x^nf(x), ...$$

sono un sistema completo in $L^2(\mathbb{R})$.

DIMOSTRAZIONE: Assumiamo il contrario: allora, per il teorema di Hahn-Banach, deve esistere una funzione non nulla $h \in L^2(\mathbb{R})$ tale che, per ogni $n \in \mathbb{N}$:

$$\int_{\mathbb{R}} x^n f(x) \overline{h(x)} dx = 0$$

Ovviamente $f\overline{h} \in L^1(\mathbb{R})$ e quindi anche $e^{a_1|x|}fh \in L^2(\mathbb{R})$ per ogni $a_1 < a.$ Ora sia

$$g(\xi) := \widehat{f}\overline{h}$$

Allora, per il lemma, la funzione g è derivabile infinite volte: $f \in C^{\infty}(\mathbb{R})$, e tutte le sue derivate sono nulle in 0. Ma la funzione g si prolunga ad una funzione analitica nella striscia del piano complesso $\{\zeta = \xi + i\eta \mid |\eta| < a\}$, perché l'integrale

$$\int f(x)\overline{h(x)}e^{-i\zeta(x)}dx$$

converge e coincide, sulla parte reale della striscia, con g; quindi g è una funzione analitica con tutte le derivate nulle in 0, sicché g(0)=0 e, per il teorema di unicità della trasformata di Fourier:

$$f(x)h(x) = 0$$
 q.o.

Dunque h = 0 in $L^2(\mathbb{R})$, che è assurdo.

QED

Questo dimostra la completezza del sistema di funzioni $\{x^n f(x)\}$, ma noi vorremmo in più un sistema ortogonale.

Nel prossimo capitolo vedremo come la trasformata di Fourier sia un isomorfismo di $L^2(\mathbb{R})$ in sé, e mostreremo come costruire un sistema ortonormale: avremo bisogno, per questo, di considerare spazi di funzioni differenziabili, che non sono spazi di Banach, e che necessitano di una teoria a parte.