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1 Introduction

Poisson brackets were introduced by Joseph-Louis Lagrange and his student
Simon-Denis de Poisson at the beginning of XIX century, as an algorithm
useful to produce solutions of the equations of motion: of course no one
ignores the definition of Poisson brackets given by Poisson himself

{f, g} =

n∑

i=1

(
∂f

∂qi

∂g

∂pi
−
∂g

∂qi

∂f

∂pi

)

where f, g : Rn×R
n −→ R are smooth functions and (q, p) Lagrange’s canoni-

cal coordinates. This produces a new smooth function which has the following
remarkable property stressed by Poisson: whenever I and J are constant of
motion for a Hamiltonian system also {I, J} is .

In the thirties of the XIX century, Jacobi discovered a very simple proof
of Poisson result: he remarked that if f is a function, the map g 7→ {f, g} is
a vector field, because of the Leibniz identity for Poisson brackets, which in
turn rests upon Leibniz rule for the differential of a product of functions:

{fg, h} = f{g, h}+ {f, h}g

We call such a vector field the Hamiltonian vector field associated to the
function f , and denote it by Xf . Now Jacobi wondered about the vector field
X{f,g}: can it be expressed in a simple way in terms of f and g? The answer
given by Jacobi is

X{f,g} = [Xf , Xg]

http://creativecommons.org/licenses/by-nc/3.0/
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where square brackets denote the commutator of vector fields.

Now come back to Poisson theorem: if I and J are constant along the
trajectories of motion of a Hamiltonian system, and if H is the Hamiltonian
function, we have XI(H) = XJ(H) = 0, so that, by Jacobi identity

X{I,J}(H) = [XI , XJ ](H) = XI({J,H})−XJ({I,H}) = 0

hence {I, J} is a constant of the motion too.

What Jacobi discovered was in fact the first example of a Lie algebra,
since, by applying the vector field X{f,g} to a function h, we find that

{{f, g}, h} = {{f, g}, h} − {{g, f}, h}

which is the nowadays familiar Jacobi identity.

In the seventies of XIX century Marius Sophus Lie began his deep re-
searches on the geometry of P.D.E. which had their achievement in the mon-
umental trilogy Theorie der Transformationsgruppen; in these hundreds of
pages, among myriads of other things, a more systematic study of Poisson
brackets is started, and Lie describes new examples of Poisson brackets, whose
nature is different from the Poisson and Lagrange’s ones1.

The unifying model for both Poisson and Lie brackets is the definition of
Poisson algebra, which can be stated at different levels of generality: the aim
of this note is precisely to sketch a general theory of Poisson brackets.

2 Definitions and examples

A purely algebraic motivation for the introduction of Poisson brackets is the
following: they combine both associative and Lie structures.

Definition 2.1 A Poisson algebra over a (commutative) ring (with unit) K

is a triple (A, ·, { }) where (A, ·) is an associative K-algebra and (A, { }) is a
Lie K-algebra, such that the following identity

{a · b, c} = a · {b, c}+ {a, c} · b

is satisfied for each a, b, c ∈ A.

1These brackets are now called Lie–Poisson brackets and were ignored by mathemati-
cians, until Kirillov, Konstant and Souriau redefined them in the context of the theory of
Lie groups representations and geometric quantization theory.
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So the axioms for a Poisson algebra are the following:

a · (b · c) = (a · b) · c

{a, b}+ {b, a} = 0

{{a, b}, c}+ {{c, a}, b}+ {{b, c}, a} = 0

{a · b, c} = a · {b, c}+ {a, c} · b

We well deal only with algebras on a field K, and moreover we will be only
interested in commutative Poisson algebra, thus in algebras such that

a · b = b · a

for each a, b ∈ A; the main reason is that Poisson algebras arise mainly as
algebras of functions (with the associative structure given by the point wise
multiplication).

We start with some trivial examples:

Example 2.2 Every Lie algebra is a Poisson algebra w.r.t. the null associa-
tive product: a · b = 0, and every associative algebra is a Poisson algebra
w.r.t. the null Poisson bracket: {a, b} = 0; such an algebra is called null
Poisson algebra.

Example 2.3 An associative algebra A is a Poisson algebra if we put {a, b} =
ab− ba; indeed

(∗) {ab, c} = (ab)c− c(ab) = a(bc)− a(cb)+ (ac)b− (ca)b = a{b, c}+ {a, c}b

so we get a Poisson algebra; however this Poisson structure is completely
determined by the associative one. Vice versa, if g is a Lie algebra then its
universal enveloping algebra U(g) is a Poisson algebra by means of the same
computation performed above.

Example 2.4 Consider a vector space V on K, its dual space V ∗ and the
commutative algebra A generated by the linear functions on V ⊕ V ∗ (we
assume for simplicity the reflexivity of V although it is not needed); we can
look at A as the symmetric algebra Sym (V ∗⊕V ) (if V is a topological vector
space we consider continuous symmetric tensors). Now, if ϕ ⊕ v, ψ ⊕ w ∈
V ∗ ⊕ V , define

{ϕ⊕ v, ψ ⊕ w} = ϕ(w)− ψ(v)
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(notice that {V ∗, V } = 0). This gives a K-bilinear skew-symmetric map on
V ∗ ⊕ V , that we extend to A by requiring

{a+ b, c} = {a, c}+ {b, c} , {ab, c} = a{b, c}+ b{a, c} , {K, A} = 0

Since A is generated (as an algebra) by V ∗ ⊕ V , this defines a bilinear skew-
symmetric operation which, by definition, satisfies Leibniz identity, while Ja-
cobi identity may be verified by a simple induction (viewing A as the sym-
metric algebra the induction follows the grading of the algebra). This Poisson
algebra is called symplectic algebra on V .

Notice that this Poisson algebra has a center which at least contains K: but
in fact K is precisely the center, since the skew-symmetric scalar product
{ } : V ∗ ⊕ V × V ∗ ⊕ V −→ K is non degenerate2. The space V ∗ ⊕ V becomes
in this way a symplectic vector space, with symplectic form given by { } (and
of course every symplectic space can be so obtained, by Darboux theorem).

For example if K = R and V = R
n then this construction gives the usual

symplectic brackets on R
2n viewed as Rn⊕(Rn)∗; we recover canonical Poisson

brackets if we consider a basis (e1, ..., en) of V , its dual basis (ε1, ..., εn) in V
∗,

and notice that (we use Einstein convention on indexes)

{ϕ⊕ v, ψ ⊕ w} = {αiεi + aie
i, βjεj + bje

j} = αibi − aiβ
i

Now, the symmetric algebra on R
n ⊕ (Rn)∗ can be seen as the polynomial

algebra R[q1, ..., qn, p1, ..., pn]; by our definition of Poisson brackets:

{qi, pj} = δij and {qi, qj} = {pi, pj} = 0

for each i, j = 1, ..., n. Because we require both Leibniz and bilinear identity
we get for two general polynomials A(q, p) =

∑
α,β aαβq

αpβ and B(q, p) =∑
η,κ bηκq

ηpκ (for the sake of simplicity we work out the computation for

n = 1, so that the multi-index α is a single index i, and so on) that3:

{A,B}(q, p) = aijbhk{q
ipj , qhpk}

=aijbhk
(
ikqi+h−1pj+k−1{q, p}+ jhqi+h−1pj+k−1{p, q}

)

=aijbhk

(
∂qipj

∂q

∂qhpk

∂p
−
∂qipj

∂p

∂qhpk

∂q

)
=
∂A

∂q

∂B

∂p
−
∂A

∂p

∂B

∂q

2Because if {ϕ ⊕ v, ψ ⊕ w} = 0 for each w ∈ V, ψ ∈ V ∗, then, for w and ψ such that
ϕ(w) = 1 and ψ(v) = 0 (they exists for trivial reasons if dimV < ∞ and by some version
of Hahn–Banach theorem if dimV = ∞): 0 = {ϕ⊕ v, ψ ⊕ w} = 1 which is absurd.

3We use here the following consequence of Leibniz formula for commutative algebras:
{anbm, chdk} = nhan−1bmch−1dk{a, c}+ nkan−1bmchdk−1{a, d}

+mhanbm−1ch−1dk{b, c}+mkanbm−1chdk−1{b, d}
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Of course in symplectic geometry one considers smooth functions rather than
polynomial ones, but Poisson brackets on polynomials determine Poisson
brackets on smooth functions, for example by density of topological vector
spaces, and in fact our example has a geometric counterpart in the notion
of symplectic manifold: if (S, ω) is a symplectic manifold then the algebra
C∞(S) is a Poisson algebra with Poisson brackets given by

{f, g} = ω(Xf , Xg)

where Xf , Xg are the Hamiltonian vector fields generated by f and g; locally
these brackets are determined by the same commutation rules {qi, pj} = δij
and {qi, qj} = {pi, pj} = 0 we stated above.

Example 2.5 Be V a vector space such that the (topological, if it is the
case) dual V ∗ is a Lie algebra g w.r.t. some fixed Lie brackets [ ]; since g is
the space of linear functions on V , the commutative algebra generated by
linear functions on V is the symmetric algebra on g: but Poincaré–Birkhoff–
Witt theorem affirms that there exists an isomorphism

GrU(g) ∼= Sym (g)

between the graded algebra associated to the filtration of the universal en-
veloping algebra of g and the symmetric algebra over g, so that we can put on
Gr U(g) (thus on Sym (g)) a Poisson algebra structure as follows: remember
that g injects into U(g) and that U(g) is filtered as (cfr. [8, §3])

U0 ⊂ U1 ⊂ U2 ⊂ ... ⊂ Uk ⊂ ...

where U0 = K and Uk are generated by K and by products x1...xh (with
h ≤ k) of elements of the Lie algebra g (so that U1 = K⊕ g). Hence

Gr U(g) =
⊕

k≥0

Uk+1

Uk

So an element of degree k is an equivalence class [x] of products of at most
k elements of g; then we can define a skew-symmetric bilinear map { } : Uk ×
Uh −→ Uh+k−1 as

{[x], [y]} := [xy − yx]

(notice that the image is in Uh+k−1 and not in Uh+k by the universal property
of the enveloping algebra: for example, if x, y have degree one, and so belong
to g, xy − yx has degree one too, being precisely [x, y]).
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In this way the algebra GrU(g) becomes a Poisson algebra w.r.t. the brackets
{ }: Leibniz identity is easily verified, while Jacobi identity follows from the
usual Jacobi identity in the Lie algebra g by an easy induction on the degree:
this algebra is called Lie–Poisson algebra over g.

The space Sym (g) can be viewed as the algebra of polynomials on the
space g∗, and in this case this Poisson structure was discovered by Lie who
gave explicit formulas and used it to prove his inverse third theorem. We
want to recover here his formula: be V = R

n, so that V ∗ = g = (Rn)∗ and
fix a basis (e1, ..., en) in V and a basis (ε1, ..., εn) in g. Then Lie brackets are
determined by their structure constants

[εi, εj] = ckijεk

Now consider two polynomials f, g : V −→ R (in fact the argument only
require f, g ∈ C∞(Rn)) and define

{f, g}(v) = ckijxk
∂f

∂xi

∂g

∂xj

(v = xie
i) which is precisely as Lie defined Lie–Poisson brackets.

More generally we could consider an associative K-algebra A with a unit
1 and a filtration, thus such that

⋃
n∈NAn for a sequence of subspaces

A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ An−1 ⊂ An ⊂ An+1 ⊂ ...

in such a way that the product is compatible with the filtration:

Ai ·Aj ⊂ Ai+j

Now suppose that A satisfies to the following condition (stressed by Krasiľsčik
and Vinogradov [5])

(KV ) [Ai, Aj] ⊂ Ai+j−1

where [ ] is the commutator induced by the associative product (we are in
other words assuming that ab− ba ∈ Ai+j−1 if a ∈ Ai and b ∈ Aj). Therefore
the graded algebra

GrA =
⊕

n≥1

An

An−1

is a Poisson algebra w.r.t. the associative product and the commutator passed
onto the quotient: this can be seen exactly as in the case of A = U(g).

This generalization of the Lie construction is only seeming: indeed a fil-
tered algebra which satisfies (KV) is always the enveloping algebra of a certain
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Lie algebra; more precisely, it suffices to consider A1 and notice that condition
(KV) becomes [A1, A1] ⊂ A1, so that A1 is a Lie algebra whose enveloping
algebra is, by definition, A itself.

As an example we take the algebra of differential operators, which we
can define in a purely algebraic manner as follows (cfr.[5], [3]): consider an
associative algebra A and define, for a fixed a ∈ A, the map

µa : A −→ A

of left multiplication: µa(b) = ab, and, if X ∈ End K(A), put

Da(X) = [µa, X ]

This is a K-linear map both in a and in X ; moreover define

Da0a1...ak = Da0Da1 ...Dak

Definition 2.6 A differential operator is an K-linear operator X : A −→ A
such that

∀a0 ∀a1... ∀an Da0a1...ak(X) = 0

n is said to be the order of the operator.

For instance when A = C∞(M) (algebra of smooth function on a manifold)
we recover the usual concept of a differential operator: the condition that D
is a differential operator of order n can be written simply as Dn+1(X) = 0.
Consider now

Dn(A) = {X ∈ End K(A) |D
n+1(X) = 0}

Evidently D0(A) = {µa}a∈A, and Dn(A) ⊂ Dn+1(A) so that the set

D(A) =
⋃

n∈N

Dn(A)

is an associative filtered algebra: one can prove, by induction on the order of
operators (cfr. [3]), that

[Dn(A),Dm(A)] ⊂ Dn+m−1(A)

so that we can define on GrD(A) a Poisson structure: this graded algebra is
nothing but the algebra of symbols of differential operators.

For example be V a vector space and D(V ) the algebra of differential
operators obtained by considering the symmetric algebra A = Sym (V ); it



8 Paolo Caressa

is, once a basis (e1, ..., en) is fixed in V , the algebra of polynomials, and a
differential operators can be written as

X =
∑

|α|≤n

pα∂
α

where α = (a1, ..., an) is a multi-index and ∂α = ∂a11 ...∂
an
n , being ∂i the deriva-

tion associated to the element ei (∂ie
j = δij). The symbol of the operator X

is the function σX : V × V ∗ −→ K defined as

σX(v, ϕ) =
∑

|α|=n

pα(v)ϕ
a1
1 ...ϕ

an
n

where ϕ =
∑

i ϕ
iεi in the dual basis (ε1, ..., εn) of (e

1, ..., en). One can check
that

σXY = σXσY

and in fact a symbol belongs to D(V ). Since it is a polynomial function,

σ : D(V ) −→ Sym (V × V ∗)

passes onto the quotient and gives an isomorphism (cfr. [3]) of associative
algebras

σ : GrD(V ) −→ Sym (V × V ∗)

The former one is a Poisson algebra, since it is associated to a filtered one
satisfying (KV) condition, and the latter is a symplectic Poisson algebra.

This is an abstract example of symplectic reduction, a fundamental phe-
nomenon in symplectic geometry (cfr. [1]).

3 The category of Poisson algebras

Poisson algebras of course do form (the objects of) a category, whose mor-
phisms are Poisson maps , thus morphisms f : A −→ B of associative algebras
which are also Lie algebra morphisms:

f{a, b} = {f(a), f(b)} and f(ab) = f(a)f(b)

Obviously a Poisson subalgebra of a Poisson algebra A is both an associative
and a Lie subalgebra of A, and a Poisson subalgebra is a Poisson ideal if
it is both an associative and a Lie ideal in A. The most important Poisson
subalgebra of a given Poisson algebra A is its Casimir subalgebra, whose
elements are called Casimir elements :

CasA = {c ∈ A | ∀a ∈ A {a, c} = 0}
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Notice that CasA is a Lie but not a Poisson ideal (it is the center of the Lie
algebra A).

Consider for instance the symplectic algebra A of a vector space V : its
Casimir subalgebra is reduced to the algebra of constant symmetric functions
K.

Of course the usual algebraic concepts apply to the category of Poisson
algebras: we can perform sum, direct sum, intersection and quotients in the
Poisson category. More interestingly we can also define tensor products, as
follows: if A1 and A2 are Poisson algebras then, on the space A1⊗A2 we put
a Poisson algebra structure by defining the following operations:

(a1 ⊗ a2)(b1 ⊗ b2) = (a1b1)⊗ (b1b2)

{a1 ⊗ a2, b1 ⊗ b2} = {a1, b1} ⊗ a2b2 + a1b1 ⊗ {a2, b2}

for ai, bi ∈ Ai. It’s easy to check that with these two operations the space
A1 ⊗ A2 becomes a Poisson algebra, which of course is said to be the tensor
product of A1 and A2. For example, when A1 = Sym (V1) and A2 = Sym (V2)
we have A1 ⊗A2 = Sym (V1 ⊕ V2).

If (A, ·, { }) is a Poisson algebra, for a ∈ A, if we define a K-endomorphism
Xa : A −→ A as

Xa(b) = {a, b}

Leibniz identity says that Xa is a derivation of the associative algebra (A, ·),
and Jacobi identity says that Xa is a derivation of the Lie algebra (A, { }).

Definition 3.1 A Hamiltonian derivation in A is a derivation of the form Xa

for some a ∈ A. A canonical derivation is a derivation both of the associative
and of the Lie algebra A.

Of course canonical derivations form a Lie subalgebra Can (A) of End (A) (the
Lie algebra of K-linear operators A −→ A), and Hamiltonian derivations form
a Lie ideal in Ham (A). Not every canonical derivation is a Hamiltonian one,
and there exists the exact sequence of Lie algebras

0 −→ CasA
i

−→−→ A
X
−→−→ HamA −→ 0

where i is the injection. (This terminology is borrowed from Mechanics:
if M is a symplectic manifold then A = C∞(M) is a Poisson algebra, and
Hamiltonian and canonical derivations correspond to Hamiltonian and locally
Hamiltonian vector fields.)

The category of Poisson algebras has, of course, a “geometric” dual. Be
A a Poisson algebra: then we can consider its spectrum, thus the set SpecA
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of maximal ideals; if A is commutative we can repeat the usual arguments of
Algebraic Geometry and Functional Analysis to give to SpecA some topology.
It suffices to consider elements of A as “points” χ ∈ Spec (A) in the following
familiar way:

a(χ) = χ(a)

(we identify maximal ideals and multiplicative functionals on the algebra).
So we can consider the weak topology w.r.t. these functions on A.

Example 3.2 If A = C∞(M) where M is a smooth manifold then of course,
as a set, Spec (A) = M . Moreover our topology cöıncides in this case with
the manifold topology since a set is closed if and only if it is the zero level set
of a smooth function (Whithney’s theorem).

Example 3.3 If A = C(X) (complex continuous functions on a Hausdorff
space) then Spec (A) is homeomorphic toX , as follows fromGel’fand–Naijmark
theory.

Now consider the algebra CasA of Casimir elements of some Poisson alge-
bra A, and its spectrum SpecCasA with its topology. Obviously there exists
a surjection

Π: SpecA −→ SpecCasA −→ 0

corresponding to the injection CasA ⊂ A: thus, in some sense, the topological
space SpecA defines a fibration on the space SpecCasA.

Theorem 3.4 Fibers of the map Π are spectra of symplectic Poisson alge-
bras.

Proof: Take m ∈ SpecCasA and Π−1(m): it is the set of maximal ideals
which contain the ideal m. Now, for each M ∈ Π−1(m), consider the quotient
AM = M/m: it is an associative algebra which is Poisson w.r.t the following
brackets:

{a+m, b+m} = {a, b}+m

(where a, b ∈ M). This definition makes sense because m ⊂ CasA, and these
brackets are really Poisson since { } on A are; now compute Casimir elements
for these brackets: if c+m is such an element then, for each a ∈ M:

{a +m, c+m} = {a, c}+m

must belong to m, which means that c+m defines an element in CasA/m ∼= K,
therefore c is a constant. Hence brackets defined on AM are symplectic.

Q.E.D.

Notice that Π is continuous by definition.
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4 Poisson calculus

Be A an associative and commutative K-algebra with unit: since it is com-
mutative, the correspondence M 7→ Der (A,M) which assign to an A-module
the module of derivations D : A −→ M , is a functor. Kähler differentials on
A are by definition a representation of this functor, i.e. a pair (ΩA, d) where
Ω is an A-module and d : A −→ ΩA a derivation, such that each derivation
δ : A −→ M in an A-module M splits as δ = µ ◦ d where µ : ΩA −→ M is
a morphism of A-modules (in other words, for each A-module M we have
Der (A,M) = homA(ΩA,M)). Of course one must show that the module
of differential exists: it can be constructed in various ways, cfr. [7, §1]; we
look at it as the quotient of the A-module generated by the symbols {da}a∈A
modulo the following relations

d(a+ b) = da+ db , d(ab) = adb+ bda , d(1) = 0

We can perform differential calculus via Kähler differentials, in a purely alge-
braic way, and repeat all usual constructions of Cartan calculus: contractions,
exterior derivative, Lie derivative; consider exterior powers Ωk

A =
∧k ΩA of

ΩA, call their elements differential forms of degree k, and extend d to a graded
differential d : Ωk

A −→ Ωk+1
A on this graded algebra

d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ

Now we define the contraction i : DerA×Ωk
A −→ A of a form on a derivation

by extending the bilinear pairing

iD
∑

i

aidbi =
∑

i

aiD(bi)

One can prove that, if α ∈ Ωk
A and D0, ..., Dk ∈ DerA, then

iD0
...iDn

dα =
k∑

i=0

(−1)iDi

(
iDn

...i
D̂i
...iD0

α
)
+

0···k∑

i<j

(−1)i+jiDn
...i

D̂j
...iDi

...i[Di,Dj ]α

We can also define the Lie derivative with Cartan magic formula

LDα = diDα + iDdα

and all the usual properties hold.
Now, if A is a Poisson algebra we can consider another “differential” cal-

culus, which is based upon Poisson brackets instead of the associative prod-
uct. More precisely, consider the space of Hamiltonian derivations HamA =
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{Xa}a∈A and the module HA generated by HamA: this module comes with a
natural derivation X : A −→ HA which extends X : A −→ Ham (A); whence,
by the universal property of Kähler differentials, it exists an A-linear map
(whose image will be HA)

H : ΩA −→ HA

such thatH◦d = X . For example, in the case of a symplectic Poisson algebra,
this map is a module isomorphism, and HA = DerA = homA(ΩA, A).

Now, basing us upon this Poisson differential X , we can construct a Pois-
son differential calculus as follows: consider the exterior powers Hk

A =
∧k HA

and the graded extension of the differential X :

X(P ∧Q) = XP ∧Q + (−1)deg PP ∧XQ

Notice that “forms” in Poisson settings are exterior products of derivations,
which we call, according to a widely used terminology, poly-derivations : for
example we can contract a Hamiltonian derivation on a derivation as

iD
∑

i

aiXbi =
∑

i

aiD(bi)

This contraction is degenerate, and we are forced to consider the space

DX = {D ∈ DerA | ∀c ∈ CasA D(c) = 0}

which is the space of derivations which act as zero on Casimir elements: in
this way the contraction i : HA ×DX −→ A is non degenerate.

Clearly this contraction extends to higher exterior powers, and also the
morphism H extends, in a graded way, as

H(ω1 ∧ ω2 ∧ · · · ∧ ωn) = (−1)nH(ω1) ∧H(ω2) · · · ∧H(ωn)

where ωi ∈ ΩA. Notice that if we change the base ring of the algebra A
from K to CasA then we can transform this Poisson calculus in the usual
differential calculus: indeed, be A′ = A ⊗K CasA (with the tensor product
Poisson structure); then CasA′ = CasA so A′ is a symplectic Poisson algebra
over CasA and HA′

∼= ΩA′ .

One can develop a Hamiltonian formalism upon the operatorH (as Gel’fand
and Dorfman did, cfr. [4]); first of all, notice that we have, by the univer-
sal property of Kähler differentials (which says in particular that DerA =
homA(ΩA, A)), and Leibniz identity:

{a, b} = 〈H(da), b〉 = iH(da)db

where 〈 〉 is the pairing between derivations and differentials; this equation
may be used to define Poisson brackets in terms of H, as stated in the fol-
lowing theorem proved in [4]:
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Theorem 4.1 An associative algebra (A, ·) is Poisson w.r.t. some brackets
{ } if and only if there exists an operator H : ΩA −→ DerA such that

(1) {a, b} = 〈H(da), db〉.

(2) 〈Hω1, ω2〉+ 〈ω1,Hω2〉 = 0.

(3) (3) 〈HLHω1
ω2, ω3〉+ 〈HLHω2

ω3, ω1〉+ 〈HLHω3
ω1, ω2〉 = 0.

If we define a map π : ΩA ∧ ΩA −→ A as

π(da, db) = 〈Hda, db〉

we get a tensor which is called Poisson tensor of the algebra A and that
determines completely the brackets: to see it we must extend the usual Lie
bracket in the space of derivation DerA to a bracket on the space of poly-
derivations

∧∗DerA; this extension is guaranteed by the following result
(cfr. [3], [9]):

Theorem 4.2 There exists a unique bilinear operation

[ ] :
∧

iDerA×
∧

jDerA −→
∧

i+j−1DerA

on the space
∧∗DerA such that

(1) [a, b] = 0, [a,D] = D(a), [D,D′] = DD′ −D′D

(2) [P,Q] = (−1)pq[Q,P ]

(3) (−1)p(r−1)[P, [Q,R]] + (−1)r(q−1)[R, [P,Q]] + (−1)q(p−1)[Q, [R,P ]] = 0

(4) [P,Q ∧ R] = [P,Q] ∧R + (−1)q(p+1)Q ∧ [P,R]

for a, b ∈ A, D,D′ ∈ DerA and P ∈
∧pDerA, Q ∈

∧q DerA, R ∈
∧r DerA.

Such brackets are called Schouten–Nijenhuis brackets and satisfy also the
following useful formula

i[P,Q]ω = (−1)q(p+1)iPd (iQω) + (−1)piQd (iPω)− iP iQdω

where P ∈
∧p DerA, Q ∈

∧q DerA and ω ∈ Ωp+q−1
A .

Now we use these brackets (which are called Schouten–Nijenhuis brack-
ets) to characterize Poisson brackets in terms of the tensor π (as noted by
Lichnerowicz4):

4A coordinate version of this result was already known to Lie himself.
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Theorem 4.3 An associative algebra (A, ·) is Poisson w.r.t. some brackets
{ } if and only if it exists a tensor π : ΩA ∧ ΩA −→ A such that

(1) {a, b} = π(da, db);

(2) [π, π] = 0.

As derivations play the rôle of forms in Poisson calculus, it is natural to ask
for Lie brackets among them, as it happens for usual vector fields in Cartan
calculus: and in fact one can prove that

Theorem 4.4 There exists unique K-Lie algebra brackets { } on ΩA such
that:

(1) d{a, b} = {da, db};

(2) {ω1, aω2} = a{ω1, ω2} + 〈H(ω1), da〉ω2 where H : ΩA −→ DerA is the
Hamiltonian operator induced by the Poisson structure on A.

Again see [3] or [9] for a proof; from this it follows that

H{ω1, ω2} = [Hω1,Hω2]

Moreover, by putting
X̃(P ) = −[π, P ]

we can extend the operator X :
∧k HA −→

∧k+1HA to an operator

X̃ :
∧

kDerA −→
∧

k+1DerA

where π is the Poisson tensor; this on HA cöıncides with X , and one may
check that, for P ∈

∧pDerA and ωi ∈ ΩA:

〈X̃(P ), ω0 ∧ ... ∧ ωp〉 =

p∑

i=0

(−1)iπ(ωi, diPω1 ∧ ... ∧ ω̂i ∧ ... ∧ ωp)+

+

0...p∑

i<j

(−1)i+jiP{ωi, ωj} ∧ ... ∧ ω̂i ∧ ...ω̂j ∧ ... ∧ ωp

Of course, by the usual computations, this formula implies that

X̃ ◦ X̃ = 0

So we have a cochain complex (
∧∗DerA, X̃) and a natural subcomplex

(
∧∗HA, X): they give rise to two cohomologies; the former is usually called
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Poisson cohomology and was defined by Lichnerowicz in 1977 (in the dif-
ferential geometrical setting), the latter has no name (I call it symplectic
cohomology for geometrical reasons). Notice that the condition on π to be a

Poisson tensor becomes a cocycle condition: X̃π = 0; in any case, a Poisson
tensor defines a cohomology class both in the H2 of the Poisson and in the
symplectic cohomology.

These cohomology spaces are actually algebras: indeed X is a graded
derivation, so that we can define a cap product as [P ] ∩ [Q] = [P ∧ Q]. But
then, since one can prove that

X̃ ◦H+H ◦ d = 0

(being d the usual differential of the de Rham complex for Kaḧler differen-
tials), we get a map

H∗ : H∗
dr(A) −→ H∗

π(A)

from de Rham to Poisson cohomology: for example, if the algebra A is sym-
plectic, this morphism is an isomorphism of DG-algebras.

Example 4.5 H0
π(A) = CasA: indeed

∧0DerA = A and being a ∈
∧0DerA

a cocycle means that X̃(a) = 0, thus Xa = 0 so that, for each b ∈ A:
{a, b} = 0 and hence a is Casimir. The same is true for symplectic cohomol-
ogy.

Example 4.6 H1
π(A) = CanA/HamA (remember that CanA are K-linear

operators A −→ A which are both derivations for the associative and for
the Lie algebra A); in fact a 1-cocycle is an element D ∈ DerA such that

X̃(D) = 0, i.e., for each a, b ∈ A:

0 = 〈X̃D, da ∧ db〉 = 〈H(da), dD(b)〉 − 〈H(db), dD(a)〉 − 〈D, {da, db}〉

= {D(a), b}+ {a,D(b)} −D{a, b}

whence 1-cocycles are precisely canonical derivations; on the other hand it is
obvious that Hamiltonian derivations are 1-coboundaries, so that H1

π(A) =
CanA/HamA.

One can also interpret H2
π(A) in terms of deformations of Poisson structures.

Example 4.7 If A is a Lie–Poisson algebra, thus A = Sym (g∗), then Pois-
son cohomology is the cohomology of the Lie algebra g with coefficients in
the representation A (this was proved geometrically by Ginzburg, Lu and
Weinstein).

We only make a mention of the fact that also a Poisson homology does exist, as
defined by Koszul (cfr. [6]) but it is not really the dual of Poisson cohomology:
the search for such a dual it is yet not concluded.
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5 Modules on Poisson algebras

When facing the problem of defining a notion of module over a Poisson algebra
different choices arise: I propose the following

Definition 5.1 A Poisson module E over a Poisson algebra (A, ·, { }) is both
a module over the algebra (A, ·) and a representation of the Lie algebra (A, { })
such that

{a, b} · e = a{b, e} − {b, a · e}

where a, b ∈ A, e ∈ E, · means the action of (A, ·) on E and { } means the
action of (A, { }) on E.

For example both A and A′ (the dual vector space of A) are Poisson modules
w.r.t. adjoint and coadjoint actions.

Example 5.2 The module of derivations DerA is Poisson by means of

(a ·D)(b) = a ·D(b) and {a,D} = [Xa, D]

Indeed the associative action is the adjoint one, while

{{a, b}, D} =[X{a,b}, D] = [[Xa, Xb], D] = [Xa, [Xb, D]]− [Xb, [Xa, D]]

={a, {b,D}} − {b, {a,D}}

and

{a, bD} = [Xa, bD] = b[Xa, D] + {a, b}D = b{a,D}+ {a, b}D

so the Lie action is Poisson.

Also the A-module HA generated by Hamiltonian derivations is Poisson w.r.t.
these actions: we only need to check that if D ∈ HA then {a,D} ∈ HA and,
since D =

∑
i aiXbi we have

{a, aiXbi} = [Xa, aiXbi] = ai[Xa, Xbi] + {a, ai}Xbi = aiX{a,bi} + {a, ai}Xbi

which again belongs to HA.

Definition 5.3 A multiplicative module E over a Poisson algebra (A, ·, { })
is both a module over the algebra (A, ·) and a representation of the Lie algebra
(A, { }) such that

{ab, e} = a{b, e} + b{a, e}

where a, b ∈ A, e ∈ E, · means the action of (A, ·) on E and { } means the
action of (A, { }) on E.
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The concept of a Poisson module is different from that of a multiplicative
module: for example DerA is not a multiplicative module, since

{ab,D} = [Xab, D] = [aXb, D] + [bXa, D]

= a{b,D}+ b{a,D} −D(a)Xb −D(b)Xa

Example 5.4 The module ΩA of Kähler differentials on a Poisson algebra A
is a Poisson module but not a multiplicative one w.r.t. the Poisson action

{a, ω} = LXa
ω = diXa

ω + iXa
dω

Indeed this defines a Lie action

{{a, b}, ω} = L[Xa,Xb]ω = [LXa
,LXb

]ω

= LXa
{b, ω} − LXb

{a, ω} = {a, {b, ω}} − {b, {a, ω}}

which is Poisson

a{b, ω} − {b, aω} = aLXb
ω − {b, a}ω − aLXb

ω = {a, b}ω

Notice that
{a, ω} = {da, ω}

where brackets on rhs of this equations represents the commutator between
differential forms given by Theorem 4.4.

This example suggests how to construct a general class of Poisson modules:
consider a representation E of the Lie algebra ωA which is also an A-module
and such that

[ω, ae] = a[ω, e]− iXa
ωe

where [ ] denotes the action of ΩA on E. If we define

{a, e} = [da, e]

it’s easy to see that we get a Poisson structure on E.
For such Poisson modules we can consider Chevalley–Eilenberg cohomol-

ogy of the Lie algebra ΩA with coefficients in E and we find that

Theorem 5.5 Poisson cohomology is precisely the cohomology of the Lie al-
gebra ΩA with coefficient in the representation A with its Poisson module
structure.
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Example 5.6 If E = DerA and if we put

[ω,D] = [Hω,D]

(where H is the operator given in Theorem 4.1) we find that the Poisson
module structure on DerA we discussed above can be obtained as {a,D} =
[da,D].

But notice, for example, that the Poisson structure on A′ can’t be induced
by any representation of ΩA.
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